Understanding Deep Neural Function Approximation in Reinforcement Learning via ϵ-Greedy Exploration
Related publications (32)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In the rapidly evolving landscape of machine learning research, neural networks stand out with their ever-expanding number of parameters and reliance on increasingly large datasets. The financial cost and computational resources required for the training p ...
The field of biometrics, and especially face recognition, has seen a wide-spread adoption the last few years, from access control on personal devices such as phones and laptops, to automated border controls such as in airports. The stakes are increasingly ...
Throughout history, the pace of knowledge and information sharing has evolved into an unthinkable speed and media. At the end of the XVII century, in Europe, the ideas that would shape the "Age of Enlightenment" were slowly being developed in coffeehouses, ...
The present work proposes a framework for nonlinear model order reduction based on a Graph Convolutional Autoencoder (GCA-ROM). In the reduced order modeling (ROM) context, one is interested in obtaining real -time and many-query evaluations of parametric ...
The performance of machine learning algorithms is conditioned by the availability of training datasets, which is especially true for the field of nondestructive evaluation. Here we propose one reconfigurable specimen instead of numerous reference specimens ...
In this thesis we explore the applications of projective geometry, a mathematical theory of the relation between 3D scenes and their 2D images, in modern learning-based computer vision systems. This is an interesting research question which contradicts the ...
Photometric stereo, a computer vision technique for estimating the 3D shape of objects through images captured under varying illumination conditions, has been a topic of research for nearly four decades. In its general formulation, photometric stereo is an ...
Fluorescence lifetime imaging (FLI) has been receiving increased attention in recent years as a powerful diagnostic technique in biological and medical research. However, existing FLI systems often suffer from a tradeoff between processing speed, accuracy, ...
Dynamic aperture is an important concept for the study of non-linear beam dynamics in circular accelerators. It describes the extent of the phase-space region where a particle's motion remains bounded over a given number of turns. Understanding the feature ...
Modern neuroscience research is generating increasingly large datasets, from recording thousands of neurons over long timescales to behavioral recordings of animals spanning weeks, months, or even years. Despite a great variety in recording setups and expe ...