**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Cosmology with Large Scale Structures using Massive Spectroscopic Surveys

Abstract

Spectroscopic surveys aim to map large fractions of the Universe to study the Large Scale Structures (LSS). LSS evolution traces the distribution of matter as a result of the tension between the expansion of the Universe and the gravitational forces, which means that LSS can be used to test cosmological and gravity model, in particular the standard model of cosmology ($\Lambda$CDM) with General Relativity (GR). One usual way to study those LSS is to quantify the clustering of the galaxies with the 2-point correlation function (2PCF). The Baryon Acoustic Oscillations (BAO) signature is characterised as a peak in the 2PCF, whose position is related to the Hubble parameter. Moreover, Redshift Space Distortions (RSD) are imprinted in the 2PCF and are used to measure the growth rate of structure of the Universe. In this thesis I measured the growth rate of structure of the emission line galaxy (ELG) sample of the extended Baryon Oscillation Spectroscopic Survey (eBOSS) from RSD in configuration space. I was able along with the Sloan Digital Sky Survey (SDSS) collaboration to participate to the final cosmological implication of the past 20 years of SDSS. By a combination of probes, the current cosmological parameters were then constrained with a high precision, outpassing the expected constraints for Stage-III dark energy experiment.Moreover I performed a BAO analysis with voids, tracing the underdensities in the quasars (QSO) sample of eBOSS. While the method was shown to bring great improvement on other tracers, it reveals itself more difficult to deal with quasars due to their low density. I was nevertheless able to detect a BAO signal and to provide forecast for a QSO sample from a DESI-like (Dark Energy Spectroscopic Instrument) experiment.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts

Loading

Related publications

Loading

Related concepts (19)

Sloan Digital Sky Survey

The Sloan Digital Sky Survey or SDSS is a major multi-spectral imaging and spectroscopic redshift survey using a dedicated 2.5-m wide-angle optical telescope at Apache Point Observatory in New Mexic

Baryon acoustic oscillations

In cosmology, baryon acoustic oscillations (BAO) are fluctuations in the density of the visible baryonic matter (normal matter) of the universe, caused by acoustic density waves in the primordial pl

Lambda-CDM model

The ΛCDM (Lambda cold dark matter) or Lambda-CDM model is a parameterization of the Big Bang cosmological model in which the universe contains three major components: first, a cosmological constant

Related publications (75)

Loading

Loading

Loading

Richard Irving Anderson, Hsin-Yu Chen, Frédéric Courbin, Fabio Finelli, Mikhail Ivanov, Melissa Joseph, Suresh Kumar, Julien Lesgourgues, Florian Niedermann, Emre Ozulker

The standard Lambda Cold Dark Matter (Lambda CDM) cosmological model provides a good description of a wide range of astrophysical and cosmological data. However, there are a few big open questions that make the standard model look like an approximation to a more realistic scenario yet to be found. In this paper, we list a few important goals that need to be addressed in the next decade, taking into account the current discordances between the different cosmological probes, such as the disagreement in the value of the Hubble constant H-0, the sigma(8)-S-8 tension, and other less statistically significant anomalies. While these discordances can still be in part the result of systematic errors, their persistence after several years of accurate analysis strongly hints at cracks in the standard cosmological scenario and the necessity for new physics or generalisations beyond the standard model. In this paper, we focus on the 5.0 sigma tension between the Planck CMB estimate of the Hubble constant H-0 and the SH0ES collaboration measurements. After showing the H-0 evaluations made from different teams using different methods and geometric calibrations, we list a few interesting new physics models that could alleviate this tension and discuss how the next decade's experiments will be crucial. Moreover, we focus on the tension of the Planck CMB data with weak lensing measurements and redshift surveys, about the value of the matter energy density Omega(m), and the amplitude or rate of the growth of structure (sigma(8), f sigma(8)). We list a few interesting models proposed for alleviating this tension, and we discuss the importance of trying to fit a full array of data with a single model and not just one parameter at a time. Additionally, we present a wide range of other less discussed anomalies at a statistical significance level lower than the H-0-S-8 tensions which may also constitute hints towards new physics, and we discuss possible generic theoretical approaches that can collectively explain the non-standard nature of these signals. Finally, we give an overview of upgraded experiments and next-generation space missions and facilities on Earth that will be of crucial importance to address all these open questions. (C) 2022 The Author(s). Published by Elsevier B.V.

Johan Comparat, Jean-Paul Richard Kneib, Anand Stéphane Raichoor, Amélie Tamone, Andrei Variu, Yuting Wang, Cheng Zhao, Zheng Zheng

We present the cosmological implications from final measurements of clustering using galaxies, quasars, and Ly alpha forests from the completed Sloan Digital Sky Survey (SDSS) lineage of experiments in large-scale structure. These experiments, composed of data from SDSS, SDSS-II, BOSS, and eBOSS, offer independent measurements of baryon acoustic oscillation (BAO) measurements of angular-diameter distances and Hubble distances relative to the sound horizon, r(d), from eight different samples and six measurements of the growth rate parameter, f sigma(g), from redshift-space distortions (RSD). This composite sample is the most constraining of its kind and allows us to perform a comprehensive assessment of the cosmological model after two decades of dedicated spectroscopic observation. We show that the BAO data alone are able to rule out dark-energy-free models at more than eight standard deviations in an extension to the flat, Lambda CDM model that allows for curvature. When combined with Planck Cosmic Microwave Background (CMB) measurements of temperature and polarization, under the same model, the BAO data provide nearly an order of magnitude improvement on curvature constraints relative to primary CMB constraints alone. Independent of distance measurements, the SDSS RSD data complement weak lensing measurements from the Dark Energy Survey (DES) in demonstrating a preference for a flat Lambda CDM cosmological model when combined with Planck measurements. The combined BAO and RSD measurements indicate a sigma(g) = 0.85 +/- 0.03, implying a growth rate that is consistent with predictions from Planck temperature and polarization data and with General Relativity. When combining the results of SDSS BAO and RSD, Planck, Pantheon Type Ia supernovae (SNe Ia), and DES weak lensing and clustering measurements, all multiple-parameter extensions remain consistent with a Lambda CDM model. Regardless of cosmological model, the precision on each of the three parameters, Omega(Lambda), H-0, and sigma(g), remains at roughly 1%, showing changes of less than 0.6% in the central values between models. In a model that allows for free curvature and a time-evolving equation of state for dark energy, the combined samples produce a constraint Omega(k) = -0.0022 +/- 0.0022. The dark energy constraints lead to w(0) = -0.909 +/- 0.081 and w(a) = -049(-0.30)(+0.35), corresponding to an equation of state of w(p) = -1.018 +/- 0.032 at a pivot redshift z(p) = 0.29 and a Dark Energy Task Force Figure of Merit of 94. The inverse distance ladder measurement under this model yields H-0 = 68.18 +/- 0.79 km s(-1) Mpc(-1) , remaining in tension with several direct determination methods; the BAO data allow Hubble constant estimates that are robust against the assumption of the cosmological model. In addition, the BAO data allow estimates of H-0 that are independent of the CMB data, with similar central values and precision under a Lambda CDM model. Our most constraining combination of data gives the upper limit on the sum of neutrino masses at Sigma m(v) < 0.115 eV (95% confidence). Finally, we consider the improvements in cosmology constraints over the last decade by comparing our results to a sample representative of the period 2000-2010. We compute the relative gain across the five dimensions spanned by w, Omega(k) , Sigma m(v),H-0, and sigma(g) and find that the SDSS BAO and RSD data reduce the total posterior volume by a factor of 40 relative to the previous generation. Adding again the Planck, DES, and Pantheon SN Ia samples leads to an overall contraction in the five-dimensional posterior volume of 3 orders of magnitude.

Johan Comparat, Timothée Guy Olivier Delubac, Jean-Paul Richard Kneib, Pierre Laurent, Cheng Li, Yu Liang, Anand Stéphane Raichoor, David Schlegel, Yuting Wang, Cheng Zhao, Zheng Zheng

In a six-year program started in 2014 July, the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) will conduct novel cosmological observations using the BOSS spectrograph at Apache Point Observatory. These observations will be conducted simultaneously with the Time Domain Spectroscopic Survey (TDSS) designed for variability studies and the Spectroscopic Identification of eROSITA Sources (SPIDERS) program designed for studies of X-ray sources. In particular, eBOSS will measure with percent-level precision the distance-redshift relation with baryon acoustic oscillations (BAO) in the clustering of matter. eBOSS will use four different tracers of the underlying matter density field to vastly expand the volume covered by BOSS and map the large-scale-structures over the relatively unconstrained redshift range 0.6 < z < 2.2. Using more than 250,000 new, spectroscopically confirmed luminous red galaxies at a median redshift z = 0.72, we project that eBOSS will yield measurements of the angular diameter distance d(A)(z) to an accuracy of 1.2% and measurements of H(z) to 2.1% when combined with the z > 0.6 sample of BOSS galaxies. With similar to 195,000 new emission line galaxy redshifts, we expect BAO measurements of d(A)(z) to an accuracy of 3.1% and H(z) to 4.7% at an effective redshift of z = 0.87. A sample of more than 500,000 spectroscopically confirmed quasars will provide the first BAO distance measurements over the redshift range 0.9 < z < 2.2, with expected precision of 2.8% and 4.2% on d(A)(z) and H(z), respectively. Finally, with 60,000 new quasars and re-observation of 60,000 BOSS quasars, we will obtain new Lya forest measurements at redshifts z > 2.1; these new data will enhance the precision of d(A)(z) and H(z) at z > 2.1 by a factor of 1.44 relative to BOSS. Furthermore, eBOSS will provide improved tests of General Relativity on cosmological scales through redshift-space distortion measurements, improved tests for non-Gaussianity in the primordial density field, and new constraints on the summed mass of all neutrino species. Here, we provide an overview of the cosmological goals, spectroscopic target sample, demonstration of spectral quality from early data, and projected cosmological constraints from eBOSS.