Publication

Experimental Investigation of the Inelastic Cyclic Behavior of Concrete-Filled Double-Skin Tubular Beam-Columns with Corrugated Inner Skins and Ultrahigh-Strength Corner Tubes

Dimitrios Lignos, Mojtaba Farahi
2022
Journal paper
Abstract

This paper presents the experimental results from nine full-scale concrete-filled double-skin tubular (CFDST) beam-columns. The test specimens exploited two fabrication strategies, featuring either hollow steel inner skins with corrugated geometry or ultrahigh-strength steel corner tubes to enhance the seismic performance of noncompact CFDST beam-columns for potential use in low-to-moderate seismicity regions. The effects of loading sequence, axial load ratio, and cross-sectional geometry were investigated. The experimental results suggested that the current AISC specification may be used to predict the axial strength of composite members with a relatively good accuracy. In the postbuckling range, conventional CFDST beam-columns and those with corrugated inner skins are prone to fracture at the corner welds of the built-up cross section. However, the latter exhibited up to two times larger drift capacities than conventional CFDST counterparts prior to losing axial load carrying capacity. Noncompact beam-columns retrofitted with ultrahigh-strength steel corner tubes exhibited a 4% lateral drift demand without experiencing more than 25% flexural strength loss. The presence of ultrahigh-strength steel increases the plastic hinge length of CFDST beam-columns by up to four times relative to CFDST beam-columns with corrugated inner skin, regardless of the employed loading history.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Compressive strength
In mechanics, compressive strength (or compression strength) is the capacity of a material or structure to withstand loads tending to reduce size (as opposed to tensile strength which withstands loads tending to elongate). In other words, compressive strength resists compression (being pushed together), whereas tensile strength resists tension (being pulled apart). In the study of strength of materials, tensile strength, compressive strength, and shear strength can be analyzed independently.
Buckling
In structural engineering, buckling is the sudden change in shape (deformation) of a structural component under load, such as the bowing of a column under compression or the wrinkling of a plate under shear. If a structure is subjected to a gradually increasing load, when the load reaches a critical level, a member may suddenly change shape and the structure and component is said to have buckled. Euler's critical load and Johnson's parabolic formula are used to determine the buckling stress of a column.
I-beam
I-beam is a generic lay term for a variety of structural members with an or -shaped cross-section. Technical terms for similar items include H-beam (for universal column, UC), w-beam (for "wide flange"), universal beam (UB), rolled steel joist (RSJ), or double-T (especially in Polish, Bulgarian, Spanish, Italian and German). I-beams are typically made of structural steel and serve a wide variety of construction uses. The horizontal elements of the are called flanges, and the vertical element is known as the "web".
Show more
Related publications (42)

Exploring the potential of the critical shear crack theory for reinforced and post-tensioned glass beams: Initial analysis and experiments

Alain Nussbaumer, Pieter Christian Louter, Jagoda Cupac

In the evolution of structural glass beam elements, the requirements for post-fracture load bearing capacity and safe failure behaviour have led to the development of reinforced and post-tensioned beams. Maximum bending capacity in the post-fracture state ...
2023

Full-Scale Experiments of Cyclically Loaded Welded Moment Connections with Highly Dissipative Panel Zones and Simplified Weld Details

Dimitrios Lignos, Andronikos Skiadopoulos

This paper presents the experimental results of two welded unreinforced flange-welded web (WUF-W) beam-to-column connections that defy the current design paradigm of prequalified welded connections. The proposed WUF-W connections feature customized beveled ...
2023

Full-scale testing of European steel beams with reduced beam section under reversed cyclic loading

Dimitrios Lignos, Hiroyuki Inamasu

Steel beams with reduced beam section (RBS) are often used as part of prequalified connections in seismic regions. However, RBS connections are not as common in Europe. Reasons relate to easiness in fabrication, which requires on-site welding, and the seis ...
Springer Nature2022
Show more
Related MOOCs (4)
The Art of Structures I - Cables and arcs
L'art des structures propose une découverte du fonctionnement des structures porteuses, telles que les bâtiments, les toitures ou les ponts. Ce cours présente les principes du dimensionnement et les s
The Art of Structures I - Cables and arcs
Ce cours présente les principes du fonctionnement, du dimensionnement et de la conception des structures. L'approche est basée sur une utilisation de la statique graphique et traite en particulier des
Sorption and transport in cementitious materials
Learn how to study and improve the durability of cementitious materials.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.