Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
This paper presents the experimental results from nine full-scale concrete-filled double-skin tubular (CFDST) beam-columns. The test specimens exploited two fabrication strategies, featuring either hollow steel inner skins with corrugated geometry or ultrahigh-strength steel corner tubes to enhance the seismic performance of noncompact CFDST beam-columns for potential use in low-to-moderate seismicity regions. The effects of loading sequence, axial load ratio, and cross-sectional geometry were investigated. The experimental results suggested that the current AISC specification may be used to predict the axial strength of composite members with a relatively good accuracy. In the postbuckling range, conventional CFDST beam-columns and those with corrugated inner skins are prone to fracture at the corner welds of the built-up cross section. However, the latter exhibited up to two times larger drift capacities than conventional CFDST counterparts prior to losing axial load carrying capacity. Noncompact beam-columns retrofitted with ultrahigh-strength steel corner tubes exhibited a 4% lateral drift demand without experiencing more than 25% flexural strength loss. The presence of ultrahigh-strength steel increases the plastic hinge length of CFDST beam-columns by up to four times relative to CFDST beam-columns with corrugated inner skin, regardless of the employed loading history.
Alain Nussbaumer, Pieter Christian Louter, Jagoda Cupac
Dimitrios Lignos, Andronikos Skiadopoulos
Dimitrios Lignos, Hiroyuki Inamasu