Summary
I-beam is a generic lay term for a variety of structural members with an or -shaped cross-section. Technical terms for similar items include H-beam (for universal column, UC), w-beam (for "wide flange"), universal beam (UB), rolled steel joist (RSJ), or double-T (especially in Polish, Bulgarian, Spanish, Italian and German). I-beams are typically made of structural steel and serve a wide variety of construction uses. The horizontal elements of the are called flanges, and the vertical element is known as the "web". The web resists shear forces, while the flanges resist most of the bending moment experienced by the beam. The Euler–Bernoulli beam equation shows that the I-shaped section is a very efficient form for carrying both bending and shear loads in the plane of the web. On the other hand, the cross-section has a reduced capacity in the transverse direction, and is also inefficient in carrying torsion, for which hollow structural sections are often preferred. The method of producing an I-beam, as rolled from a single piece of wrought iron, was patented by Alphonse Halbou of the company Forges de la Providence in 1849. Bethlehem Steel was a leading supplier of rolled structural steel of various cross-sections in American bridge and skyscraper work of the mid-twentieth century. Today, rolled cross-sections have been partially displaced in such work by fabricated cross-sections. There are two standard I-beam forms: Rolled I-beam, formed by hot rolling, cold rolling or extrusion (depending on material). Plate girder, formed by welding (or occasionally bolting or riveting) plates. I-beams are commonly made of structural steel but may also be formed from aluminium or other materials. A common type of I-beam is the rolled steel joist (RSJ)—sometimes incorrectly rendered as reinforced steel joist. British and European standards also specify Universal Beams (UBs) and Universal Columns (UCs). These sections have parallel flanges (shown as "W-Section" in the accompanying illustration), as opposed to the varying thickness of RSJ flanges (illustrated as "S-Section") which are seldom now rolled in the UK.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (18)
CIVIL-238: Structural mechanics (for GC)
The course discusses the basic principles of structural mechanics, analyzing the performance of materials and structures against loading and focuses on the stress strain relationships and the effect
MICRO-200: Mechanism Design I
Ce cours introduit les bases de la mécanique des structures : calcul des contraintes et déformations provoquées par les forces extérieures et calcul des déformations. Ces enseignements théoriques sont
ME-104: Introduction to structural mechanics
The student will acquire the basis for the analysis of static structures and deformation of simple structural elements. The focus is given to problem-solving skills in the context of engineering desig
Show more
Related lectures (215)
Advanced Optics: Metalenses and Metasurfaces
Explores the applications of metasurfaces and metalenses in advanced optics, focusing on focusing effects and beam shaping using plasmonic nanostructures.
Dimensioning Beam Flexion
Covers beam spillage, prevention methods, and critical discharge length calculation.
Mechanisms Design: Course Organization
Explains the organization of the 'Design of Mechanisms I' course, covering schedule, exercises, exams, and interactive learning.
Show more
Related publications (262)

A Softening Constitutive Law and Gradient-Inelastic Fiber-Based Element for 3-Dimensional Frame Simulations Under Seismic Excitations

Diego Isidoro Heredia Rosa

Steel frame structures are essential components of modern infrastructure. Understanding their behavior under seismic loading is critical for ensuring public safety and minimizing damage that occurs during earthquakes. To accurately predict the response of ...
EPFL2024

FLO:RE – A new floor system made of reused reinforced concrete and steel elements

Corentin Jean Dominique Fivet, Maléna Bastien Masse, Célia Marine Küpfer, Numa Joy Bertola

Carefully extracting reinforced concrete (RC) elements from soon-to-be demolished structures and reusing them as load-bearing components is an emerging circular low-carbon alternative to building new structures. As floor construction typically accounts for ...
IABSE2024

Decarbonization potential of steel fibre-reinforced limestone calcined clay cement concrete one-way slabs

Hisham Tarek Mohamed Hafez

This study deals with a comparison of the environmental performance of one-way slabs utilizing steel fibrereinforced limestone calcined clay cement (LC3) concrete with the control case of Ordinary Portland cement concrete. The experimental program constitu ...
Elsevier Sci Ltd2024
Show more
Related concepts (13)
Bending
In applied mechanics, bending (also known as flexure) characterizes the behavior of a slender structural element subjected to an external load applied perpendicularly to a longitudinal axis of the element. The structural element is assumed to be such that at least one of its dimensions is a small fraction, typically 1/10 or less, of the other two. When the length is considerably longer than the width and the thickness, the element is called a beam.
Structural steel
Structural steel is a category of steel used for making construction materials in a variety of shapes. Many structural steel shapes take the form of an elongated beam having a of a specific cross section. Structural steel shapes, sizes, chemical composition, mechanical properties such as strengths, storage practices, etc., are regulated by standards in most industrialized countries. Most structural steel shapes, such as -beams, have high second moments of area, which means they are very stiff in respect to their cross-sectional area and thus can support a high load without excessive sagging.
Limit state design
Limit State Design (LSD), also known as Load And Resistance Factor Design (LRFD), refers to a design method used in structural engineering. A limit state is a condition of a structure beyond which it no longer fulfills the relevant design criteria. The condition may refer to a degree of loading or other actions on the structure, while the criteria refer to structural integrity, fitness for use, durability or other design requirements.
Show more
Related MOOCs (2)
The Art of Structures I - Cables and arcs
L'art des structures propose une découverte du fonctionnement des structures porteuses, telles que les bâtiments, les toitures ou les ponts. Ce cours présente les principes du dimensionnement et les s
The Art of Structures II - Lattice structures, beams and frames
Les structures en treillis, en poutre, en dalles et en cadre sont essentielles pour une grande partie des constructions modernes : immeubles pour l'habitation ou de bureaux, halles et usines, ponts, o