General circulation modelA general circulation model (GCM) is a type of climate model. It employs a mathematical model of the general circulation of a planetary atmosphere or ocean. It uses the Navier–Stokes equations on a rotating sphere with thermodynamic terms for various energy sources (radiation, latent heat). These equations are the basis for computer programs used to simulate the Earth's atmosphere or oceans. Atmospheric and oceanic GCMs (AGCM and OGCM) are key components along with sea ice and land-surface components.
Flandrian interglacialThe Flandrian interglacial or stage is the regional name given by geologists and archaeologists in the British Isles to the period from around 12,000 years ago, at the end of the last glacial period to the present day. As such, it is in practice identical in span to the Holocene (the present geological epoch). The Flandrian began as the relatively short-lived Younger Dryas climate downturn came to an end. This formed the last gasp of the Devensian glaciation, the final stage of the Pleistocene epoch.
Atmospheric methaneAtmospheric methane is the methane present in Earth's atmosphere. The concentration of atmospheric methaneone of the most potent greenhouse gasesis increasing due to methane emissions, and is causing climate change. Methane's radiative forcing (RF) of climate is direct, and it is the second largest contributor to human-caused climate forcing in the historical period. Methane is a major source of water vapour in the stratosphere through oxidation; and water vapour adds about 15% to methane's radiative forcing effect.
Climate changeIn common usage, climate change describes global warming—the ongoing increase in global average temperature—and its effects on Earth's climate system. Climate change in a broader sense also includes previous long-term changes to Earth's climate. The current rise in global average temperature is more rapid than previous changes, and is primarily caused by humans burning fossil fuels. Fossil fuel use, deforestation, and some agricultural and industrial practices increase greenhouse gases, notably carbon dioxide and methane.
Quaternary glaciationThe Quaternary glaciation, also known as the Pleistocene glaciation, is an alternating series of glacial and interglacial periods during the Quaternary period that began 2.58 Ma (million years ago) and is ongoing. Although geologists describe this entire period up to the present as an "ice age", in popular culture this term usually refers to the most recent glacial period, or to the Pleistocene epoch in general. Since Earth still has polar ice sheets, geologists consider the Quaternary glaciation to be ongoing, though currently in an interglacial period.
Post-glacial reboundPost-glacial rebound (also called isostatic rebound or crustal rebound) is the rise of land masses after the removal of the huge weight of ice sheets during the last glacial period, which had caused isostatic depression. Post-glacial rebound and isostatic depression are phases of glacial isostasy (glacial isostatic adjustment, glacioisostasy), the deformation of the Earth's crust in response to changes in ice mass distribution. The direct raising effects of post-glacial rebound are readily apparent in parts of Northern Eurasia, Northern America, Patagonia, and Antarctica.
Little Ice AgeThe Little Ice Age (LIA) was a period of regional cooling, particularly pronounced in the North Atlantic region. It was not a true ice age of global extent. The term was introduced into scientific literature by François E. Matthes in 1939. The period has been conventionally defined as extending from the 16th to the 19th centuries, but some experts prefer an alternative timespan from about 1300 to about 1850. The NASA Earth Observatory notes three particularly cold intervals.
Saale glaciationThe Saale glaciation or Saale Glaciation, sometimes referred to as the Saalian glaciation, Saale cold period (Saale-Kaltzeit), Saale complex (Saale-Komplex) or Saale glacial stage (called the Wolstonian Stage in Britain), covers the middle of the three large glaciations in Northern Europe and the northern parts of Eastern Europe, Central Europe and Western Europe by the Scandinavian Inland Ice Sheet. It follows the Holstein interglacial (Hoxnian Stage in Britain) and precedes the Eemian interglacial (Ipswichian in Britain).
Kansan glaciationThe Kansan glaciation or Kansan glacial (see Pre-Illinoian) was a glacial stage and part of an early conceptual climatic and chronological framework composed of four glacial and interglacial stages. Kansan glaciation was used by early geomorphologists and Quaternary geologists to subdivide glacial and nonglacial deposits within north-central United States from youngest to oldest and are as follows: Wisconsin (glacial) Sangamonian (interglacial) Illinoian (glacial) Yarmouthian (interglacial) Kansan (glacial) Aftonian (interglacial) Nebraskan (glacial) As developed between 1894 and 1909, the Kansan Stage was based on a model that assumed that the Pleistocene deposits contained only two glacial tills and one volcanic ash bed within Nebraska and Kansas.
Greenland ice sheetThe Greenland ice sheet (Grønlands indlandsis, Sermersuaq) is a vast body of ice covering , roughly near 80% of the surface of Greenland. It is sometimes referred to as an ice cap, or under the term inland ice, or its Danish equivalent, indlandsis. The acronym GIS is frequently used in the scientific literature. It is the second largest ice body in the world, after the Antarctic ice sheet. The ice sheet is almost long in a north–south direction, and its greatest width is at a latitude of 77°N, near its northern margin.