Publication

Sub-Ocean: Subsea Dissolved Methane Measurements Using an Embedded Laser Spectrometer Technology

Jérôme Chappellaz
2018
Journal paper
Abstract

The causes of the ∼80 ppmv increase of atmospheric carbon dioxide (CO2) during the last glacial.interglacial climatic transition remain debated. We analyzed the parallel evolution of CO2 and its stable carbon isotopic ratio (δ13CO2) in the European Project for Ice Coring in Antarctica (EPICA) Dome C ice core to bring additional constraints. Agreeing well but largely improving the Taylor Dome ice core record of lower resolution our δ13CO2 record is characterized by a W shape, with two negative δ13CO2 excursions of 0.5% during Heinrich 1 and Younger Dryas events, bracketing a positive δ13CO2 peak during the Bølling/ Allerød warm period. The comparison with marine records and the outputs of two C cycle box models suggest that changes in Southern Ocean ventilation drove most of the CO2 increase, with additional contributions from marine productivity changes on the initial CO2 rise and δ13CO2 decline and from rapid vegetation buildup during the CO2 plateau of the Bølling/Allerød. Copyright 2010 by the American Geophysical Union.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood

Something went wrong

Related concepts (39)
Ice core
An ice core is a core sample that is typically removed from an ice sheet or a high mountain glacier. Since the ice forms from the incremental buildup of annual layers of snow, lower layers are older than upper ones, and an ice core contains ice formed over a range of years. Cores are drilled with hand augers (for shallow holes) or powered drills; they can reach depths of over two miles (3.2 km), and contain ice up to 800,000 years old. The physical properties of the ice and of material trapped in it can be used to reconstruct the climate over the age range of the core.
8.2-kiloyear event
In climatology, the 8.2-kiloyear event was a sudden decrease in global temperatures that occurred approximately 8,200 years before the present, or 6,200 BC, and which lasted for the next two to four centuries. It defines the start of the Northgrippian age in the Holocene epoch. The cooling was significantly less pronounced than during the Younger Dryas cold period that preceded the beginning of the Holocene. During the event, atmospheric methane concentration decreased by 80 ppb, an emission reduction of 15%, by cooling and drying at a hemispheric scale.
Greenland ice core project
The Greenland Ice Core Project (GRIP) was a research project organized through the European Science Foundation (ESF). The project ran from 1989 to 1995, with drilling seasons from 1990 to 1992. In 1988, the project was accepted as an ESF-associated program, and in the summer of 1989, the fieldwork was started in Greenland. GRIP aimed to collect and investigate 3000-meter-long ice cores drilled at the apex of the Greenland ice sheet, also known as Summit Camp.
Show more
Related publications (45)

Diagenetic isotope exchange in biocalcites for paleoclimate reconstruction

Deyanira Graciela Cisneros Lazaro

The oxygen isotope compositions of fossil biocalcites, such as foraminifera, bivalves, brachiopods, and belemnites have allowed for reconstructions of sea surface and deep ocean temperatures throughout the Phanerozoic and constitute the most important reco ...
EPFL2024

A 2000-year temperature reconstruction on the East Antarctic plateau from argon-nitrogen and water stable isotopes in the Aurora Basin North ice core

Jérôme Chappellaz

The temperature of the Earth is one of the most important climate parameters. Proxy records of past climate changes, in particular temperature, represent a fundamental tool for exploring internal climate processes and natural climate forcings. Despite the ...
COPERNICUS GESELLSCHAFT MBH2023

A Case Study on Drivers of the Isotopic Composition of Water Vapor at the Coast of East Antarctica

Michael Lehning, Armin Sigmund, Riqo Chaar

Stable water isotopes (SWIs) contain valuable information on the past climate and phase changes in the hydrologic cycle. Recently, vapor measurements in the polar regions have provided new insights into the effects of snow-related and atmospheric processes ...
AMER GEOPHYSICAL UNION2023
Show more
Related MOOCs (1)
Water quality and the biogeochemical engine
Learn about how the quality of water is a direct result of complex bio-geo-chemical interactions, and about how to use these processes to mitigate water quality issues.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.