Publication

Byzantine-Resilient Multi-Agent System

Abstract

We consider the problem of making a multi-agent system (MAS) resilient to Byzantine failures through replication. We consider a very general model of MAS, where randomness can be involved in the behavior of each agent. We propose the first universal scheme to make such a MAS Byzantine-resilient.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (11)
Intelligent agent
In artificial intelligence, an intelligent agent (IA) is an agent acting in an intelligent manner; It perceives its environment, takes actions autonomously in order to achieve goals, and may improve its performance with learning or acquiring knowledge. An intelligent agent may be simple or complex: A thermostat or other control system is considered an example of an intelligent agent, as is a human being, as is any system that meets the definition, such as a firm, a state, or a biome.
Multi-agent system
A multi-agent system (MAS or "self-organized system") is a computerized system composed of multiple interacting intelligent agents. Multi-agent systems can solve problems that are difficult or impossible for an individual agent or a monolithic system to solve. Intelligence may include methodic, functional, procedural approaches, algorithmic search or reinforcement learning. Despite considerable overlap, a multi-agent system is not always the same as an agent-based model (ABM).
Agent-based model
An agent-based model (ABM) is a computational model for simulating the actions and interactions of autonomous agents (both individual or collective entities such as organizations or groups) in order to understand the behavior of a system and what governs its outcomes. It combines elements of game theory, complex systems, emergence, computational sociology, multi-agent systems, and evolutionary programming. Monte Carlo methods are used to understand the stochasticity of these models.
Show more
Related publications (38)

Multi-agent Learning with Privacy Guarantees

Elsa Rizk

A multi-agent system consists of a collection of decision-making or learning agents subjected to streaming observations from some real-world phenomenon. The goal of the system is to solve some global learning or optimization problem in a distributed or dec ...
EPFL2023

Networked Signal and Information Processing: Learning by multiagent systems

Ali H. Sayed, Stefan Vlaski

This article reviews significant advances in networked signal and information processing (SIP), which have enabled in the last 25 years extending decision making and inference, optimization, control, and learning to the increasingly ubiquitous environments ...
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC2023

Impact of Redundancy on Resilience in Distributed Optimization and Learning

Nirupam Gupta, Shuo Liu

This paper considers the problem of resilient distributed optimization and stochastic learning in a server-based architecture. The system comprises a server and multiple agents, where each agent has its own local cost function. The agents collaborate with ...
New York2023
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.