Aging of industrial Fe-zeolite based catalysts for nitrous oxide abatement in nitric acid production plants
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Hydrogen holds the potential to be an alternative to replace fossil fuels in the future. The tremendous research effort dedicated to the issue of hydrogen storage has led to considerable advancements in the development of both adsorption materials and chem ...
The catalytic effect of tetraphenylporphyrin on the oxygen reduction with ferrocene in 1,2-dichloroethane can be finely tuned by varying the molar ratio of the acid to the catalyst present in the solution. The mechanism involves binding of molecular oxygen ...
The use of zeolites for catalytic reactions is a field in continuous development. Since it was demonstrated that metal-zeolites are efficient catalysts for NOx abatement, decomposition of nitrous oxide (N2O) over Fe-containing zeolites has attracted great ...
In the accepted mechanisms of carbon nanotube (CNT) growth by catalytic chemical vapor deposition (CCVD), the catalyst support is falsely considered as a passive material whose only role is to prevent catalytic particles from coarsening. The chemical chang ...
Benzylic carbocations, which are easily generated in situ from alcohols or acetates by Brønsted or Lewis acids, undergo selective facial discrimination in diastereoselective reactions (see scheme; FG=functional group). The A values are responsible for the ...
Supported metal catalysts are important from both an industrial and a scientific point of view. They are used, amongst others, in large-scale processes such as catalytic reforming, hydrotreating, polymerization reactions and hydrogenations. Often, these ca ...
In mobile SCR applications, the most widespread reducing agent is ammonia. However, due to its toxicity it is not stored directly as pressurized or liquefied gas. Instead, an aqueous solution of 32.5 wt % urea is commonly used as ammonia precursor. The ure ...
The iron-catalyzed dehydrogenation of formic acid has been studied both experimentally and mechanistically. The most active catalysts were generated in situ from cationic Fe-II/Fe-III precursors and tris[2-(diphenylphosphino)ethyl]phosphine (1, PP3). In co ...
A just cause: Fukuzumi and co-workers have employed experimental methods to tease out “cause and effect” relationships between subtle modification of the catalyst design or reaction conditions and the resultant changes in the homogeneous oxygen-reduction m ...
A highly efficient iron-catalyzed production of 5-hydroxymethylfurfural (HMF) from sugar is reported. The dehydration of fructose and sucrose has been studied in the presence of different iron salts and co-catalysts. As a result, it was found that fructose ...