Optimization and Real-Time Aspects of Aircraft Model-Based Navigation
Related publications (153)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This study aims to identify an optimal, as well as practical, parametric structure for a delta-wing UAV aerodynamic model for the purpose of model-based navigation. We present a comprehensive procedure for characterizing the aerodynamics of this platform, ...
Autonomous navigation of small UAVs is typically based on the integration of inertial navigation systems (INS) together with global navigation satellite systems (GNSS). However, GNSS signals can face various forms of interference affecting their continuous ...
Navigation of drones is predominantly based on sensor fusion algorithms. Most of these algorithms make use of some form of Bayesian filtering with a majority employing an Extended Kalman Filter (EKF), wherein inertial measurements are fused with a Global N ...
Drones hold promise to assist in civilian tasks. To realize this application, future drones must operate within large cities, covering large distances while navigating within cluttered urban landscapes. The increased efficiency of winged drones over rotary ...
This paper presents an experimental procedure for aerodynamic characterization of a delta-wing UAV for model-based navigation applications. We report the design of experiments, aimed to maximize aerodynamic coefficients observability while meeting time con ...
Despite the importance and pervasiveness of Wikipedia as one of the largest platforms for open knowledge, surprisingly little is known about how people navigate its content when seeking information. To bridge this gap, we present the first systematic large ...
The success of drone missions is incumbent on an accurate determination of the drone pose and velocity, which are collectively estimated by fusing iner- tial measurement unit and global navigation satellite system (GNSS) mea- surements. However, during a G ...
The success of drone missions is incumbent on an accurate determination of the drone pose and velocity, which are collectively estimated by fusing inertial measurement unit and global navigation satellite system (GNSS) measurements. However, during a GNSS ...
A relatively novel approach of autonomous navigation employing platform dynamics as the primary process model raises new implementational challenges. These are related to: (i) potential numerical instabilities during longer flights; (ii) the quality of mod ...
Safety-critical navigation applications require that estimation errors be reliably quantified and bounded. Over the last decade, significant effort has been put to guarantee a bounded position estimation by using Global Navigation Satellite Systems (GNSS) ...