Boolean expressionIn computer science, a Boolean expression is an expression used in programming languages that produces a Boolean value when evaluated. A Boolean value is either true or false. A Boolean expression may be composed of a combination of the Boolean constants true or false, Boolean-typed variables, Boolean-valued operators, and Boolean-valued functions. Boolean expressions correspond to propositional formulas in logic and are a special case of Boolean circuits.
Boolean algebraIn mathematics and mathematical logic, Boolean algebra is a branch of algebra. It differs from elementary algebra in two ways. First, the values of the variables are the truth values true and false, usually denoted 1 and 0, whereas in elementary algebra the values of the variables are numbers. Second, Boolean algebra uses logical operators such as conjunction (and) denoted as ∧, disjunction (or) denoted as ∨, and the negation (not) denoted as ¬.
Quantile functionIn probability and statistics, the quantile function outputs the value of a random variable such that its probability is less than or equal to an input probability value. Intuitively, the quantile function associates with a range at and below a probability input the likelihood that a random variable is realized in that range for some probability distribution. It is also called the percentile function (after the percentile), percent-point function or inverse cumulative distribution function (after the cumulative distribution function).
Boolean differential calculusBoolean differential calculus (BDC) (German: Boolescher Differentialkalkül (BDK)) is a subject field of Boolean algebra discussing changes of Boolean variables and Boolean functions. Boolean differential calculus concepts are analogous to those of classical differential calculus, notably studying the changes in functions and variables with respect to another/others. The Boolean differential calculus allows various aspects of dynamical systems theory such as automata theory on finite automata Petri net theory supervisory control theory (SCT) to be discussed in a united and closed form, with their individual advantages combined.