Summary
In computer science, a Boolean expression is an expression used in programming languages that produces a Boolean value when evaluated. A Boolean value is either true or false. A Boolean expression may be composed of a combination of the Boolean constants true or false, Boolean-typed variables, Boolean-valued operators, and Boolean-valued functions. Boolean expressions correspond to propositional formulas in logic and are a special case of Boolean circuits. Most programming languages have the Boolean operators OR, AND and NOT; in C and some languages inspired by it, these are represented by "||" (double pipe character), "&&" (double ampersand) and "!" (exclamation point) respectively, while the corresponding bitwise operations are represented by "|", "&" and "~" (tilde). In the mathematical literature the symbols used are often "+" (plus), "·" (dot) and overbar, or "∨" (vel), "∧" (et) and "¬" (not) or "′" (prime). Some languages, e.g., Perl and Ruby, have two sets of Boolean operators, with identical functions but different precedence. Typically these languages use and, or and not for the lower precedence operators. Some programming languages derived from PL/I have a bit string type and use BIT(1) rather than a separate Boolean type. In those languages the same operators serve for boolean operations and bitwise operations. The languages represent OR, AND, NOT and EXCLUSIVE OR by "|", "&", "¬" (infix) and "¬" (prefix). Short-circuit evaluation Some programming languages, e.g., Ada, have short-circuit Boolean operators. These operators use a lazy evaluation, that is, if the value of the expression can be determined from the left hand Boolean expression then they do not evaluate the right hand Boolean expression. As a result, there may be side effects that only occur for one value of the left hand operand. The expression is evaluated as . The expression is evaluated as . and are equivalent Boolean expressions, both of which are evaluated as . typeof true and typeof false return Of course, most Boolean expressions will contain at least one variable (), and often more ().
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (3)
Boolean algebra
In mathematics and mathematical logic, Boolean algebra is a branch of algebra. It differs from elementary algebra in two ways. First, the values of the variables are the truth values true and false, usually denoted 1 and 0, whereas in elementary algebra the values of the variables are numbers. Second, Boolean algebra uses logical operators such as conjunction (and) denoted as ∧, disjunction (or) denoted as ∨, and the negation (not) denoted as ¬.
Boolean data type
In computer science, the Boolean (sometimes shortened to Bool) is a data type that has one of two possible values (usually denoted true and false) which is intended to represent the two truth values of logic and Boolean algebra. It is named after George Boole, who first defined an algebraic system of logic in the mid 19th century. The Boolean data type is primarily associated with conditional statements, which allow different actions by changing control flow depending on whether a programmer-specified Boolean condition evaluates to true or false.
Boolean function
In mathematics, a Boolean function is a function whose arguments and result assume values from a two-element set (usually {true, false}, {0,1} or {-1,1}). Alternative names are switching function, used especially in older computer science literature, and truth function (or logical function), used in logic. Boolean functions are the subject of Boolean algebra and switching theory. A Boolean function takes the form , where is known as the Boolean domain and is a non-negative integer called the arity of the function.