Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.
Photosensitizers yielding superior photocurrents are crucial for copper-electrolyte-based highly efficient dye-sensitized solar cells (DSCs). Herein, two molecularly tailored organic sensitizers are presented, coded ZS4 and ZS5, through judiciously employing dithieno[3,2-b:2 ",3 "-d]pyrrole (DTP) as the pi-linker and hexyloxy-substituted diphenylquinoxaline (HPQ) or naphthalene-fused-quinoxaline (NFQ) as the auxiliary electron-accepting unit, respectively. Endowed with the HPQ acceptor, ZS4 shows more efficient electron injection and charge collection based on substantially reduced interfacial charge recombination as compared to ZS5. As a result, ZS4-based DSCs achieve a power conversion efficiency (PCE) of 13.2% under standard AM1.5G sunlight, with a high short-circuit photocurrent density (J(sc)) of 16.3 mA cm(-2), an open-circuit voltage (V-oc) of 1.05 V and a fill factor (FF) of 77.1%. Remarkably, DSCs sensitized with ZS4 exhibit an outstanding stability, retaining 95% of their initial PCE under continuous light soaking for 1000 h. It is believed that this is a new record efficiency reported so far for copper-electrolyte-based DSCs using a single sensitizer. The work highlights the importance of developing molecularly tailored photosensitizers for highly efficient DSCs with copper electrolyte.
Michael Graetzel, Shaik Mohammed Zakeeruddin, Jacques-Edouard Moser, Etienne Christophe Socie, Weiwei Zhang, Brian Irving Carlsen, Yinghui Wu, Yameng Ren, Huiyun Jiang
Michael Graetzel, Shaik Mohammed Zakeeruddin, Ulf Anders Hagfeldt, Hui-Seon Kim
Michael Graetzel, Shaik Mohammed Zakeeruddin, Yuhang Liu, Ulf Anders Hagfeldt, Péter Péchy, Mohammad Ibrahim Dar, Yiming Cao, Yasemin Saygili, Weiwei Zhang, Marko Stojanovic