Climate change is expected to alter the temporal distribution of precipitation events, leading to prolonged drought periods and an increased frequency of extreme precipitation events. Changes in precipitation pattern will directly affect soil moisture dyna ...
As air temperature and vapor pressure deficit (VPD) increase continuously, forests are losing more water through evapotranspiration, with large consequences for local and global hydrological cycles. In regions with high vegetation cover, soil warming can b ...
Despite their high ecological value, non-perennial streams have received less attention than their perennial counterparts. This doctoral thesis addresses this disparity by advancing knowledge on the dynamics of the drainage density and hydrologic processes ...
Microfluidic models are proving to be powerful systems to study fundamental processes in porous media, due to their ability to replicate topologically complex environments while allowing detailed, quantitative observations at the pore scale. Yet, while por ...
An efficient characterization of scientifically significant locations is essential prior to the return of humans to the Moon. The highest resolution imagery acquired from orbit of south-polar shadowed regions and other relevant locations remains, at best, ...
Redox homeostasis is a key factor in maintaining cellular function and health. The main determinant of the intracellular redox potential is ubiquitous glutathione (GSH) together with its oxidized dimer (GSSG). Importantly, both redox equilibrium and GSH ho ...
Climate change induced shifts in treeline position, both towards higher altitudes and latitudes induce changes in soil organic matter. Eventually, soil organic matter is transported to alpine and subarctic lakes with yet unknown consequences for dissolved ...
Redox reactions underlie several biogeochemical processes and are typically spatiotemporally heterogeneous in soils and sediments. However, redox heterogeneity has yet to be incorporated into mainstream conceptualizations and modeling of soil biogeochemist ...
Water is ubiquitous within the pore space of rocks and has been shown to affect their physical and mechanical behaviour. Indeed, water can act on the rock strength via mechanical (i.e., reducing the effective stresses) or chemical effects (e.g., mineral di ...
Bacteria are ubiquitous single cellular organisms. Compared to eukaryotic cells, bacteria have two unique characteristics: the membrane-less nucleoid and the cell wall built of peptidoglycan (PG). In most bacteria, a single circular chromosome is compacted ...