A Machine Learning-based Framework for Forecasting Sales of New Products With Short Life Cycles Using Deep Neural Networks
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Increasing concerns with privacy have stimulated interests in Session-based Recommendation (SR) using no personal data other than what is observed in the current browser session. Existing methods are evaluated in static settings which rarely occur in real- ...
Recent trends of incorporating attention mechanisms in vision have led re- searchers to reconsider the supremacy of convolutional layers as a primary build- ing block. Beyond helping CNNs to handle long-range dependencies, Ramachandran et al. (2019) showed ...
This tutorial covers biomedical image reconstruction, from the foundational concepts of system modeling and direct reconstruction to modern sparsity and learning-based approaches. Imaging is a critical tool in biological research and medicine, and most ima ...
Human motion prediction, i.e., forecasting future body poses given observed pose sequence, has typically been tackled with recurrent neural networks (RNNs). However, as evidenced by prior work, the resulted RNN models suffer from prediction errors accumula ...
Open-ended learning environments (OELEs) allow students to freely interact with the content and to discover important principles and concepts of the learning domain on their own. However, only some students possess the necessary skills for efficient and ef ...
Closure modeling based on the Mori-Zwanzig formalism has proven effective to improve the stability and accuracy of projection-based model order reduction. However, closure models are often expensive and infeasible for complex nonlinear systems. Towards eff ...
Increasing concerns with privacy have stimulated interests in Session-based Recommendation (SR) using no personal data other than what is observed in the current browser session. Existing methods are evaluated in static settings which rarely occur in real- ...
In this paper, we propose a novel temporal spiking recurrent neural network (TSRNN) to perform robust action recognition in videos. The proposed TSRNN employs a novel spiking architecture which utilizes the local discriminative features from high-confidenc ...
Robustness of extracted embeddings in cross-database scenarios is one of the main challenges in text-independent speaker verification (SV) systems. In this paper, we investigate this robustness via performing structural cross-database experiments with or w ...
Speech Emotion Recognition (SER) has been shown to benefit from many of the recent advances in deep learning, including recurrent based and attention based neural network architectures as well. Nevertheless, performance still falls short of that of humans. ...