Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.
We propose uBFT, the first State Machine Replication (SMR) system to achieve microsecond-scale latency in data centers, while using only 2f+1 replicas to tolerate f Byzantine failures. The Byzantine Fault Tolerance (BFT) provided by uBFT is essential as pure crashes appear to be a mere illusion with real-life systems reportedly failing in many unexpected ways. uBFT relies on a small non-tailored trusted computing base—disaggregated memory—and consumes a practically bounded amount of memory. uBFT is based on a novel abstraction called Consistent Tail Broadcast, which we use to prevent equivocation while bounding memory. We implement uBFT using RDMA-based disaggregated memory and obtain an end-to-end latency of as little as 10 us. This is at least 50× faster than MinBFT, a state-of-the-art 2f+1 BFT SMR based on Intel’s SGX. We use uBFT to replicate two KV-stores (Memcached and Redis), as well as a financial order matching engine (Liquibook). These applications have low latency (up to 20 us) and become Byzantine tolerant with as little as 10 us more. The price for uBFT is a small amount of reliable disaggregated memory (less than 1 MiB), which in our prototype consists of a small number of memory servers connected through RDMA and replicated for fault tolerance.