Publication

Engineering Materials for Neurotechnology

Diego Ghezzi
2023
Journal paper
Abstract

Neurotechnology applies methods and devices to mitigate the burden of neurological and mental disorders. In particular, neural interfaces establish a long-term, seamless, symbiotic integration between implants and neural tissue. Materials play a pivotal role in neurotechnology. Advanced materials and materials engineering are crucial to achieving the desired function and outcome. Recently, neural interfaces extended their range of applications with the emergence of flexible, conformable, stretchable, injectable, and transient electronics. However, despite this enormous advancement in materials science and engineering, clinical devices still rely on old-fashioned but reliable materials and processes. The gap between research development and industry adoption has recently gained high interest. This article analyzes recent developments, discusses roadblocks, and provides a roadmap for materials engineering applied to neurotechnology.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Materials science
Materials science is an interdisciplinary field of researching and discovering materials. Materials engineering is an engineering field of finding uses for materials in other fields and industries. The intellectual origins of materials science stem from the Age of Enlightenment, when researchers began to use analytical thinking from chemistry, physics, and engineering to understand ancient, phenomenological observations in metallurgy and mineralogy. Materials science still incorporates elements of physics, chemistry, and engineering.
Neural engineering
Neural engineering (also known as neuroengineering) is a discipline within biomedical engineering that uses engineering techniques to understand, repair, replace, or enhance neural systems. Neural engineers are uniquely qualified to solve design problems at the interface of living neural tissue and non-living constructs (Hetling, 2008). The field of neural engineering draws on the fields of computational neuroscience, experimental neuroscience, neurology, electrical engineering and signal processing of living neural tissue, and encompasses elements from robotics, cybernetics, computer engineering, neural tissue engineering, materials science, and nanotechnology.
Engineering
Engineering is the practice of using natural science, mathematics, and the engineering design process to solve problems, increase efficiency and productivity, and improve systems. Modern engineering comprises many subfields which include designing and creating infrastructure, machinery, vehicles, electronics, materials, and energy. The discipline of engineering encompasses a broad range of more specialized fields of engineering, each with a more specific emphasis on particular areas of applied mathematics, applied science, and types of application.
Show more
Related publications (33)

Educating Engineering Students to Address Bias and Discrimination Within Their Project Teams

Roland John Tormey, Siara Ruth Isaac, Nihat Kotluk

What training should engineering students receive to enable them to contribute to reducing bias, discrimination and the persistent lack of diversity in engineering? Collaboration is central to professional engineering work and, consequently, teamwork and g ...
2023

Engineering of Existing Structures: The Need and Place for Non-destructive Evaluation

Eugen Brühwiler, Numa Joy Bertola, Thomas Schumacher

Structural engineers today are still educated mainly to design new structures. This ignores the fact that structures already exist and need to be maintained. Students are thus often ill-equipped to deal with maintenance and preservation of existing structu ...
2022

Development of a Transient Neural Interface for Minimally Invasive Recording and Stimulation

Adele Fanelli

Transient electronics enabling devices to safely disappear in the environment can be applied not only in green electronics, but also in bioelectronic medicine. Neural implants able to degrade harmlessly inside the body eliminate the need for removal surger ...
EPFL2022
Show more
Related MOOCs (14)
Neuronal Dynamics 2- Computational Neuroscience: Neuronal Dynamics of Cognition
This course explains the mathematical and computational models that are used in the field of theoretical neuroscience to analyze the collective dynamics of thousands of interacting neurons.
Neuronal Dynamics 2- Computational Neuroscience: Neuronal Dynamics of Cognition
This course explains the mathematical and computational models that are used in the field of theoretical neuroscience to analyze the collective dynamics of thousands of interacting neurons.
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.