Riemann sumIn mathematics, a Riemann sum is a certain kind of approximation of an integral by a finite sum. It is named after nineteenth century German mathematician Bernhard Riemann. One very common application is approximating the area of functions or lines on a graph, but also the length of curves and other approximations. The sum is calculated by partitioning the region into shapes (rectangles, trapezoids, parabolas, or cubics) that together form a region that is similar to the region being measured, then calculating the area for each of these shapes, and finally adding all of these small areas together.
Empty sumIn mathematics, an empty sum, or nullary sum, is a summation where the number of terms is zero. The natural way to extend non-empty sums is to let the empty sum be the additive identity. Let , , , ... be a sequence of numbers, and let be the sum of the first m terms of the sequence. This satisfies the recurrence provided that we use the following natural convention: . In other words, a "sum" with only one term evaluates to that one term, while a "sum" with no terms evaluates to 0.
Multiplicative inverseIn mathematics, a multiplicative inverse or reciprocal for a number x, denoted by 1/x or x−1, is a number which when multiplied by x yields the multiplicative identity, 1. The multiplicative inverse of a fraction a/b is b/a. For the multiplicative inverse of a real number, divide 1 by the number. For example, the reciprocal of 5 is one fifth (1/5 or 0.2), and the reciprocal of 0.25 is 1 divided by 0.25, or 4. The reciprocal function, the function f(x) that maps x to 1/x, is one of the simplest examples of a function which is its own inverse (an involution).