Somme de RiemannEn mathématiques, et plus précisément en analyse, les sommes de Riemann sont des sommes finies approchant des intégrales. En pratique, elles permettent de calculer numériquement des aires sous la courbe de fonctions ou des longueurs d'arcs, ou inversement, de donner une valeur à des suites de sommes. Elles peuvent également être utilisées pour définir la notion d'intégration. Leur nom vient du mathématicien allemand Bernhard Riemann.
Somme videEn mathématiques, la somme vide est le résultat d'une addition d'aucun nombre. Sa valeur numérique est par convention égale à zéro. Ce fait est particulièrement utile en mathématiques et en particulier en algèbre. Un cas simple et bien connu est a + 0 = a. L'addition de zéro à un nombre quelconque donne toujours comme résultat ce nombre, parce que nous avons ajouté zéro copie de a, c'est-à-dire rien. Plus généralement, étant donné une opération d'addition sur une certaine collection d'objets, la somme vide est le résultat d'une addition d'aucun objet de l'ensemble.
InverseEn mathématiques, l'inverse d'un élément x (s'il existe) est le nom donné à l'élément symétrique, lorsque la loi est notée multiplicativement. Dans le cas réel, il s'agit du nombre qui, multiplié par x, donne 1. On le note x ou 1/x. Par exemple, dans , l'inverse de 3 est , puisque . Soit un monoïde, un ensemble muni d'une loi de composition interne associative, qu'on note , et d'un élément neutre pour noté 1. Un élément est dit inversible à gauche (respectivement inversible à droite) s'il existe un élément tel que (respectivement ).