Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
With the increase in penetration of power electronic converters in the power systems, a demand for overcurrent/ overloading capability has risen for the fault clearance duration. This article gives an overview of the limiting factors and the recent technologies for the overcurrent performance of SiC power modules in power electronics converters. It presents the limitations produced at the power module level by packaging materials, which include semiconductor chips, substrates, metallization, bonding techniques, die attach, and encapsulation materials. Specifically, technologies for overcurrent related temperatures in excess of 200 degrees C are discussed. This article also discusses potential technologies, which have been proven or may be potential candidates for improving the safe operating area. The discussed technologies are use of phase-change materials below the semiconductor chip, Peltier elements, new layouts of the power modules, control and modulation techniques for converters. Special attention has been given to an overview of various potential phase-change materials, which can be considered for high-temperature operations.