Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Interactive oracle proofs (IOPs) are a proof system model that combines features of interactive proofs (IPs) and probabilistically checkable proofs (PCPs). IOPs have prominent applications in complexity theory and cryptography, most notably to constructing succinct arguments. In this work, we study the limitations of IOPs, as well as their relation to those of PCPs. We present a versatile toolbox of IOP-to-IOP transformations containing tools for: (i) length and round reduction; (ii) improving completeness; and (iii) derandomization. We use this toolbox to establish several barriers for IOPs: - Low-error IOPs can be transformed into low-error PCPs. In other words, interaction can be used to construct low-error PCPs; alternatively, low-error IOPs are as hard to construct as low-error PCPs. This relates IOPs to PCPs in the regime of the sliding scale conjecture for inverse-polynomial soundness error. - Limitations of quasilinear-size IOPs for 3SAT with small soundness error. - Limitations of IOPs where query complexity is much smaller than round complexity. - Limitations of binary-alphabet constant-query IOPs. We believe that our toolbox will prove useful to establish additional barriers beyond our work.
We study the proof theory and algorithms for orthologic, a logical system based on ortholattices, which have shown practical relevance in simplification and normalization of verification conditions. Ortholattices weaken Boolean algebras while having po ...
Viktor Kuncak, Simon Guilloud, Sankalp Gambhir