Dimensionality reductionDimensionality reduction, or dimension reduction, is the transformation of data from a high-dimensional space into a low-dimensional space so that the low-dimensional representation retains some meaningful properties of the original data, ideally close to its intrinsic dimension. Working in high-dimensional spaces can be undesirable for many reasons; raw data are often sparse as a consequence of the curse of dimensionality, and analyzing the data is usually computationally intractable (hard to control or deal with).
Kernel (operating system)The kernel is a computer program at the core of a computer's operating system and generally has complete control over everything in the system. It is the portion of the operating system code that is always resident in memory and facilitates interactions between hardware and software components. A full kernel controls all hardware resources (e.g. I/O, memory, cryptography) via device drivers, arbitrates conflicts between processes concerning such resources, and optimizes the utilization of common resources e.
Floating-point arithmeticIn computing, floating-point arithmetic (FP) is arithmetic that represents subsets of real numbers using an integer with a fixed precision, called the significand, scaled by an integer exponent of a fixed base. Numbers of this form are called floating-point numbers. For example, 12.345 is a floating-point number in base ten with five digits of precision: However, unlike 12.345, 12.3456 is not a floating-point number in base ten with five digits of precision—it needs six digits of precision; the nearest floating-point number with only five digits is 12.
Data managementData management comprises all disciplines related to handling data as a valuable resource. The concept of data management arose in the 1980s as technology moved from sequential processing (first punched cards, then magnetic tape) to random access storage. Since it was now possible to store a discrete fact and quickly access it using random access disk technology, those suggesting that data management was more important than business process management used arguments such as "a customer's home address is stored in 75 (or some other large number) places in our computer systems.
Logistic distributionIn probability theory and statistics, the logistic distribution is a continuous probability distribution. Its cumulative distribution function is the logistic function, which appears in logistic regression and feedforward neural networks. It resembles the normal distribution in shape but has heavier tails (higher kurtosis). The logistic distribution is a special case of the Tukey lambda distribution.
Probability distribution fittingProbability distribution fitting or simply distribution fitting is the fitting of a probability distribution to a series of data concerning the repeated measurement of a variable phenomenon. The aim of distribution fitting is to predict the probability or to forecast the frequency of occurrence of the magnitude of the phenomenon in a certain interval. There are many probability distributions (see list of probability distributions) of which some can be fitted more closely to the observed frequency of the data than others, depending on the characteristics of the phenomenon and of the distribution.
Gumbel distributionIn probability theory and statistics, the Gumbel distribution (also known as the type-I generalized extreme value distribution) is used to model the distribution of the maximum (or the minimum) of a number of samples of various distributions. This distribution might be used to represent the distribution of the maximum level of a river in a particular year if there was a list of maximum values for the past ten years. It is useful in predicting the chance that an extreme earthquake, flood or other natural disaster will occur.
Hybrid kernelA hybrid kernel is an operating system kernel architecture that attempts to combine aspects and benefits of microkernel and monolithic kernel architectures used in operating systems. The traditional kernel categories are monolithic kernels and microkernels (with nanokernels and exokernels seen as more extreme versions of microkernels). The "hybrid" category is controversial, due to the similarity of hybrid kernels and ordinary monolithic kernels; the term has been dismissed by Linus Torvalds as simple marketing.
Kernel (statistics)The term kernel is used in statistical analysis to refer to a window function. The term "kernel" has several distinct meanings in different branches of statistics. In statistics, especially in Bayesian statistics, the kernel of a probability density function (pdf) or probability mass function (pmf) is the form of the pdf or pmf in which any factors that are not functions of any of the variables in the domain are omitted. Note that such factors may well be functions of the parameters of the pdf or pmf.
One-dimensional spaceIn physics and mathematics, a sequence of n numbers can specify a location in n-dimensional space. When n = 1, the set of all such locations is called a one-dimensional space. An example of a one-dimensional space is the number line, where the position of each point on it can be described by a single number. In algebraic geometry there are several structures that are technically one-dimensional spaces but referred to in other terms. A field k is a one-dimensional vector space over itself.