Data-flow diagramA data-flow diagram is a way of representing a flow of data through a process or a system (usually an information system). The DFD also provides information about the outputs and inputs of each entity and the process itself. A data-flow diagram has no control flowthere are no decision rules and no loops. Specific operations based on the data can be represented by a flowchart. There are several notations for displaying data-flow diagrams. The notation presented above was described in 1979 by Tom DeMarco as part of structured analysis.
Scheme (mathematics)In mathematics, a scheme is a mathematical structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities (the equations x = 0 and x2 = 0 define the same algebraic variety but different schemes) and allowing "varieties" defined over any commutative ring (for example, Fermat curves are defined over the integers). Scheme theory was introduced by Alexander Grothendieck in 1960 in his treatise "Éléments de géométrie algébrique"; one of its aims was developing the formalism needed to solve deep problems of algebraic geometry, such as the Weil conjectures (the last of which was proved by Pierre Deligne).
Oort constantsThe Oort constants (discovered by Jan Oort) and are empirically derived parameters that characterize the local rotational properties of our galaxy, the Milky Way, in the following manner: where and are the rotational velocity and distance to the Galactic Center, respectively, measured at the position of the Sun, and and are the velocities and distances at other positions in our part of the galaxy. As derived below, and depend only on the motions and positions of stars in the solar neighborhood.
PycnoclineA pycnocline is the cline or layer where the density gradient (∂ρ/∂z) is greatest within a body of water. An ocean current is generated by the forces such as breaking waves, temperature and salinity differences, wind, Coriolis effect, and tides caused by the gravitational pull of celestial bodies. In addition, the physical properties in a pycnocline driven by density gradients also affect the flows and vertical profiles in the ocean. These changes can be connected to the transport of heat, salt, and nutrients through the ocean, and the pycnocline diffusion controls upwelling.