Tunneling protocolIn computer networks, a tunneling protocol is a communication protocol which allows for the movement of data from one network to another. It involves allowing private network communications to be sent across a public network (such as the Internet) through a process called encapsulation. Because tunneling involves repackaging the traffic data into a different form, perhaps with encryption as standard, it can hide the nature of the traffic that is run through a tunnel.
Delay-tolerant networkingDelay-tolerant networking (DTN) is an approach to computer network architecture that seeks to address the technical issues in heterogeneous networks that may lack continuous network connectivity. Examples of such networks are those operating in mobile or extreme terrestrial environments, or planned networks in space. Recently, the term disruption-tolerant networking has gained currency in the United States due to support from DARPA, which has funded many DTN projects.
Pockels effectThe Pockels effect or Pockels electro-optic effect, also known as the linear electro-optic effect, is named after Friedrich Carl Alwin Pockels who studied the effect in 1893. The Pockels effect is a directionally dependent linear variation in the refractive index of an optical medium that occurs in response to the application of an electric field. The non-linear counterpart, the Kerr effect, causes changes in the refractive index at a rate proportional to the square of the applied electric field.
Encapsulation (networking)Encapsulation is the computer-networking process of concatenating layer-specific headers or tailers with a service data unit (i.e. a payload) for transmitting information over computer networks. Deencapsulation (or de-encapsulation) is the reverse computer-networking process for receiving information; it removes from the protocol data unit (PDU) a previously concatenated header or tailer that an underlying communications layer transmitted.
Laser pumpingLaser pumping is the act of energy transfer from an external source into the gain medium of a laser. The energy is absorbed in the medium, producing excited states in its atoms. When the number of particles in one excited state exceeds the number of particles in the ground state or a less-excited state, population inversion is achieved. In this condition, the mechanism of stimulated emission can take place and the medium can act as a laser or an optical amplifier. The pump power must be higher than the lasing threshold of the laser.
Proprietary protocolIn telecommunications, a proprietary protocol is a communications protocol owned by a single organization or individual. Ownership by a single organization gives the owner the ability to place restrictions on the use of the protocol and to change the protocol unilaterally. Specifications for proprietary protocols may or may not be published, and implementations are not freely distributed. Proprietors may enforce restrictions through control of the intellectual property rights, for example through enforcement of patent rights, and by keeping the protocol specification a trade secret.
Cross-correlationIn signal processing, cross-correlation is a measure of similarity of two series as a function of the displacement of one relative to the other. This is also known as a sliding dot product or sliding inner-product. It is commonly used for searching a long signal for a shorter, known feature. It has applications in pattern recognition, single particle analysis, electron tomography, averaging, cryptanalysis, and neurophysiology. The cross-correlation is similar in nature to the convolution of two functions.
Coherence (physics)In physics, coherence expresses the potential for two waves to interfere. Two monochromatic beams from a single source always interfere. Physical sources are not strictly monochromatic: they may be partly coherent. Beams from different sources are mutually incoherent. When interfering, two waves add together to create a wave of greater amplitude than either one (constructive interference) or subtract from each other to create a wave of minima which may be zero (destructive interference), depending on their relative phase.
Networking hardwareNetworking hardware, also known as network equipment or computer networking devices, are electronic devices which are required for communication and interaction between devices on a computer network. Specifically, they mediate data transmission in a computer network. Units which are the last receiver or generate data are called hosts, end systems or data terminal equipment.
Quantum tomographyQuantum tomography or quantum state tomography is the process by which a quantum state is reconstructed using measurements on an ensemble of identical quantum states. The source of these states may be any device or system which prepares quantum states either consistently into quantum pure states or otherwise into general mixed states. To be able to uniquely identify the state, the measurements must be tomographically complete. That is, the measured operators must form an operator basis on the Hilbert space of the system, providing all the information about the state.