Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
This paper demonstrates high-resolution imaging using millimeter Wave (mmWave) radars that can function even in dense fog. We leverage the fact that mmWave signals have favorable propagation characteristics in low visibility conditions, unlike optical sensors like cameras and LiDARs which cannot penetrate through dense fog. Millimeter-wave radars, however, suffer from very low resolution, specularity, and noise artifacts. We introduce HawkEye, a system that leverages a cGAN architecture to recover high-frequency shapes from raw low-resolution mmWave heat-maps. We propose a novel design that addresses challenges specific to the structure and nature of the radar signals involved. We also develop a data synthesizer to aid with large-scale dataset generation for training. We implement our system on a custom-built mmWave radar platform and demonstrate performance improvement over both standard mmWave radars and other competitive baselines.
Romain Christophe Rémy Fleury, Amir Jafargholi, Jalaledin Tayebpour
Dirk Grundler, Mohammad Hamdi, Ferdinand Rémy Hynek Posva
, ,