Near-bed stratification controls bottom hypoxia in ice-covered alpine lakes
Related publications (58)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The largest natural increases in atmospheric CO2 concentration as recorded in ice cores occur when the Earth climate abruptly shifts from a glacial to an interglacial state. Open questions remain regarding the processes at play, the sequences of events and ...
Polar ice sheets and mountain glaciers, which cover roughly 11% of the Earth's land surface, store organic carbon from local and distant sources and then release it to downstream environments. Climate-driven changes to glacier runoff are expected to be lar ...
Sediment-laden riverine floods transport large quantities of dissolved oxygen into the receiving deep layers of lakes. Hence, the water quality of deep lakes is strongly influenced by the frequency of riverine floods. Although flood frequency reflects clim ...
Low concentrations of dissolved oxygen remain a global concern regarding the ecological health of lakes and reservoirs. In addition to high nutrient loads, climate-induced changes in lake stratification and mixing represent additional anthropogenic menace ...
In high-altitude alpine catchments, diurnal streamflow cycles are typically dominated by snowmelt or ice melt. Evapotranspiration-induced diurnal streamflow cycles are less observed in these catchments but might happen simultaneously. During a field campai ...
Knowledge of surface hydrology is essential for many applications, including studies that aim to understand permafrost response to changing climate and the associated feedback mechanisms. Advanced remote sensing techniques make it possible to retrieve a ra ...
In the recent years, global climate change has induced evergrowing loss of sea ice in the Arctic. As the sea ice disappears, albedo diminishes and the sea surface is more likely to be warmed by incoming solar radiation. With the right wind conditions, this ...
A numerical model to compute the dynamics of glaciers is presented. Ice damage due to cracks or crevasses can be taken into account whenever needed. This model allows simulations of the past and future retreat of glaciers, the calving process or the break- ...
The 2007 International Polar Year (IPY) in the Antarctic was distinguished by strong regional and seasonal ice-atmosphere-ocean anomalies associated with an overall weakening of the prevailing westerly circulation. Here we assess the ice-atmosphere-ocean c ...
Summary and conclusion: In this report, we first study evaporation and condensation on alpine glaciers. We present two models of ice evaporation and we compare them with observations. We afterwards estimate the impact of ice evaporation in present and futu ...