Two-dimensional Pure Isotropic Proton Solid State NMR
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In numerous biological processes that constitute the base of living organisms, protein function is fundamentally related to internal dynamics occurring on μs-ms time scales that can give rise to chemical exchange contributions to relaxation. In a heteronuc ...
Nanoscale magnets might form the building blocks of next generation memories. To explore their functionality, magnetic sensing at the nanoscale is key. We present a multifunctional combination of a nanometer-sized superconducting quantum interference devic ...
We demonstrate that a quantitative measure of slow molecular motions in solid proteins can be accessed by measuring site-specific N-15 rotating-frame relaxation rates at high magic-angle-spinning frequencies. ...
This thesis describes new methods for the detection of 14N nuclei by solid-state nuclear magnetic resonance. So far, the low natural abundance (0.4 %) 15N isotope has been widely used to study nitrogen-containing samples because of its spin-1/2 nature. The ...
The molecular dynamics of [-SiDMe(2)] grafted on two amorphous silica materials, mesoporous SBA and non-porous Aerosil, was investigated by deuteron ((2)H) solid-state NMR spectroscopy. Quadrupole echo (QE), quadrupole Carr-Purcell-Meiboom-Gill (QCPMG) and ...
The molecular dynamics of a series of organometallic complexes covalently bound to amorphous silica surfaces is determined experimentally using solid-state nuclear magnetic resonance (NMR) spectroscopy and density functional theory calculations (DFT). The ...
A two-dimensional proton-mediated carbon-carbon correlation experiment that relies on through-bond heteronuclear magnetization transfers is demonstrated in the context of solid-state NMR of proteins. This new experiment, dubbed J-CHHC by analogy to the pre ...
Residual dipolar coupling between quadrupolar and other nuclei under MAS has not usually been thought to be important in high field NMR spectroscopy. We show that coupling to (14)N broadens (1)H lineshapes significantly even at 11.7 T, and that we can deco ...
Three-dimensional nuclear magnetic resonance (3D NMR) provides one of the foremost analytical tools available for the elucidation of biomolecular structure, function and dynamics. Executing a 3D NMR experiment generally involves scanning a series of time-d ...
Among the different fields of research in nuclear magnetic resonance (NMR) which are currently investigated in the Laboratory of Biomolecular Magnetic Resonance (LRMB), two subjects that are closely related to each other are presented in this article. On t ...