Publication

Influence of Viscous Lubricant on Nucleation and Propagation of Frictional Ruptures

Abstract

Fluids are pervasive in the Earth's crust and saturate fractures and faults. The combination of fluids and gouge layers developing along faults can generate fluids of different viscosities. Such viscous fluids were found to influence the reactivation, frictional stability of faults, and eventually the dynamics of propagating earthquake ruptures. We reproduced laboratory earthquakes on analog material (PMMA) to study the influence of viscous lubricant on fault frictional stability, rupture nucleation, and propagation under mixed lubrication conditions. Experiments were conducted in dry conditions, and with fluids presenting a viscosity ranging from 1 to 1,000 mPa.s. Through photoelasticity, high-frequency strain gauge sensors, and accelerometer measurements, we obtained new insights about the influence of lubricant on a characteristic nucleation length, rupture propagation velocity, and local slip and slip rate evolution during the reproduced frictional ruptures. Our experiments show that the presence of a lubricant generating mixed lubricated conditions along the fault induces, (a) a reduction of the frictional resistance, (b) an increase in nucleation length, (c) a decrease in the fracture energy. In addition, the larger the viscosity of the fluids, the larger the reduction of frictional strength and the increase in the nucleation length. Moreover, ruptures occurring under mixed lubricated conditions showed a pulse-like rather than crack-like behavior, suggesting that viscous lubrication can induce the transition from crack-like to pulse-like rupture along natural faults. We demonstrate, supported by existing theory, that this transition is mainly governed by the stress acting on the fault at the onset of nucleation, which is drastically reduced in presence of a lubricant.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (33)
Lubrication
Lubrication is the process or technique of using a lubricant to reduce friction and wear and tear in a contact between two surfaces. The study of lubrication is a discipline in the field of tribology. Lubrication mechanisms such as fluid-lubricated systems are designed so that the applied load is partially or completely carried by hydrodynamic or hydrostatic pressure, which reduces solid body interactions (and consequently friction and wear). Depending on the degree of surface separation, different lubrication regimes can be distinguished.
Viscosity
The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity is defined scientifically as a force multiplied by a time divided by an area. Thus its SI units are newton-seconds per square metre, or pascal-seconds. Viscosity quantifies the internal frictional force between adjacent layers of fluid that are in relative motion.
Friction
Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. There are several types of friction: Dry friction is a force that opposes the relative lateral motion of two solid surfaces in contact. Dry friction is subdivided into static friction ("stiction") between non-moving surfaces, and kinetic friction between moving surfaces. With the exception of atomic or molecular friction, dry friction generally arises from the interaction of surface features, known as asperities (see Figure 1).
Show more
Related publications (54)

Modeling of rough contact interfaces with trapped compressive liquid pockets

Jean-François Molinari, Guillaume Anciaux, Parissasadat Alavi, Julie Richard, Loris Rocchi

Boundary and mixed lubrication are usually used to reduce friction in sheet metal form- ing. In the boundary lubrication regime load is mainly carried by contacting asperities. Therefore, the tribological problem can be solved in the dry case using a geome ...
2023

Spatio-temporal patterns of fluid-driven aseismic slip transients: implications to seismic swarms

Brice Tanguy Alphonse Lecampion, Alexis Alejandro Sáez Uribe

Seismic swarms are often interpreted to be driven by natural fluid pressurization in the Earth’s crust, when seismicity is observed to spread away from a common origin and follows approximately a square-root-of-time pattern of growth. On the other hand, a ...
EGU2022

Friction Induces Anisotropic Propulsion in Sliding Magnetic Microtriangles

Ignacio Pagonabarraga Mora

In viscous fluids, motile microentities such as bacteria or artificial swimmers often display different transport modes than macroscopic ones. A current challenge in the field aims at using friction asymmetry to steer the motion of microscopic particles. H ...
AMER CHEMICAL SOC2022
Show more
Related MOOCs (4)
Fluid Mechanics
Ce cours de base est composé des sept premiers modules communs à deux cours bachelor, donnés à l’EPFL en génie mécanique et génie civil.
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.