Publication

Computational fluid dynamics simulations of the heat transfer properties of graphene-based nanolubricants and application to hydrodynamic lubrication

Roberto Guarino
2024
Journal paper
Abstract

In this paper, we consider experimental data available for graphene-based nanolubricants to evaluate their convective heat transfer performance by means of computational fluid dynamics (CFD) simulations. Single-phase models with temperature-dependent properties are employed for this purpose. The base fluid is a polyalkylene glycol, and we show the effect of the addition of carbon nanohorns and graphene nanoplatelets (GNPs), in different volume fractions, on the convective heat transfer coefficient between two parallel plates. Then, an application to hydrodynamic lubrication is discussed. The extreme in-plane thermal conductivity of graphene allows a smaller temperature rise of the GNP-based nanolubricant, i.e., a more effective heat removal. To the best of our knowledge, this work represents the first application of single-phase nanofluid models to hydrodynamic lubrication.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.