Ultrafast control of emergent quantum matter probed by electron microscopy
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Magnetic materials can host skyrmions, which are topologically non-trivial spin textures. In chiral magnets with cubic lattice symmetry, all previously observed skyrmion phases require thermal fluctuations to become thermodynamically stable in bulk materia ...
From recent advances in solid state physics, a novel material classification scheme has evolved
which is based on the concept of topology and provides an understanding of different phenomena
ranging from quantum transport to unusual flavors of superconduct ...
We theoretically study the topological properties of the tight-binding model on the breathing kagome lattice with antisymmetric spin-orbit coupling (SOC) between nearest neighbors. We show that the system hosts nontrivial topological phases even without se ...
Topological defects are found ubiquitously in various kinds of matter, such as vortices in type-II superconductors, and magnetic skyrmions in chiral ferromagnets. While knowledge on the static behavior of magnetic skyrmions is accumulating steadily, their ...
The ground and excited electronic states are responsible for several materials' properties. The modern capability of rapidly solving on a computer the fundamental equations of relativistic or semi-relativistic quantum mechanics allows to compute the electr ...
In recent years, topology gained a central role in physics. We learnt that energetics could be often explained better by classes of objects defined by having qualitative differences. In today's jargon, we say they are topologically distinct. The process of ...
We demonstrate, both theoretically and experimentally, the concept of nonlinear second-order topological insulators, a class of bulk insulators with quantized Wannier centers and a bulk polarization directly controlled by the level of nonlinearity. We show ...
Thermoelectric effects are more sensitive and promising probes to topological properties of emergent materials, but much less addressed compared to other physical properties. We study the thermoelectric effects of ZrTe5 in a magnetic field. The presence of ...
Extremely large nonsaturating magnetoresistance has recently been reported for a large number of both topologically trivial and nontrivial materials. Different mechanisms have been proposed to explain the observed magnetotransport properties, yet without a ...
We propose a method by which the quantization of the Hall conductance can be directly measured in the transport of a one-dimensional atomic gas. Our approach builds on two main ingredients: (1) a constriction optical potential, which generates a mesoscopic ...