Multi-scale characterization and modeling of notched strength and translaminar fracture in hybrid thin-ply composites based on different carbon fiber grades
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
A micromechanically based model for the deformation, strength, and stress-rupture life of a ceramic-matrix composite is developed for materials that do not degrade by oxidative attack. The rupture model for a unidirectional composite incorporates fiber-str ...
The present paper addresses the correlation between mechanical damage and the change in electrical resistance of CFRP under tensile loading. A linear relation between the strain and the electrical resistance of single carbon fibers was obtained experimenta ...
The stress transfer from broken to unbroken fibers in fiber-reinforced polymer-matrix (PMC) and aluminum-matrix (AMC) composites is studied using a detailed 3D finite element model (FEM) and using the standard shear-lag model (SLM). The stress transfer pre ...
The mode I inter-laminar fracture toughness of advanced knitted textile composites was investigated. Two complex weft-knitted glass fabrics were selected for the study: a triple rib knit and a Milano knit were impregnated with a tough epoxy resin and teste ...
A process has been developed where multiple yarns of commingled glass and polypropylene are heated and placed to a desired geometry. The placed unidirectional (UD) tow is then encapsulated by over-moulding with glass mat thermoplastics (GMTs). The effects ...
Experimental squeeze flow results show that the behaviour of concentrated short fibre suspensions and concentrated long fibre suspensions impregnated with polymer melts are qualitatively different. Short fibre suspensions have a low yield stress, have an o ...
Low-cycle fatigue failure in titanium metal matrix composites is caused by two separate damage mechanisms: fatigue crack growth in the Ti matrix and fiber breakage. Here, a coupled numerical model for predicting both crack growth and fiber breakage is deve ...
A multiscale approach to composite failure, in which detailed information on small-scale micromechanics is incorporated approximately yet accurately into larger-scale models capable of simulating extensive damage evolution and ultimate failure, is applied ...
A new numerical model is proposed for simulating the mechanical behavior of unidirectional composites which is based on a three-dimensional (3D) shear-lag model. The 3D shear-lag model considers the micro-damage phenomena of interfacial debonding and inter ...
Particle reinforced composites are produced by infiltrating ceramic particle beds with 99.99% Al. Resulting materials feature a relatively high volume fraction (40-55 vol. pet) of homogeneously distributed reinforcement. The evolution of damage during tens ...