Multi-agent reinforcement learning with graph convolutional neural networks for optimal bidding strategies of generation units in electricity markets
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Learning socially-aware motion representations is at the core of recent advances in multi-agent problems, such as human motion forecasting and robot navigation in crowds. Despite promising progress, existing representations learned with neural networks sti ...
2021
, ,
We examine the problem of regret minimization when the learner is involved in a continuous game with other optimizing agents: in this case, if all players follow a no-regret algorithm, it is possible to achieve significantly lower regret relative to fully ...
Can artificial agents benefit from human conventions? Human societies manage to successfully self-organize and resolve the tragedy of the commons in common-pool resources, in spite of the bleak prediction of non-cooperative game theory. On top of that, rea ...
Learning how to act and adapting to unexpected changes are remarkable capabilities of humans and other animals. In the absence of a direct recipe to follow in life, behaviour is often guided by rewarding and by surprising events. A positive or a negative o ...
Spending an uncontrolled quantity and quality of time on digital information sites is affecting our well-being and can lead to serious problems in the long term. In this paper, we present a sequential recommendation framework that uses deep reinforcement l ...
ACM2021
, ,
We present a multi-agent learning algorithm, ALMA-Learning, for efficient and fair allocations in large-scale systems. We circumvent the traditional pitfalls of multi-agent learning (e.g., the moving target problem, the curse of dimensionality, or the need ...
2021
,
In this letter, we present a method for integrating central pattern generators (CPGs), i.e. systems of coupled oscillators, into the deep reinforcement learning (DRL) framework to produce robust and omnidirectional quadruped locomotion. The agent learns to ...
This paper addresses the issue of interpretability and auditability of reinforcement-learning agents employed in the recovery of unsecured consumer debt. To this end, we develop a deterministic policy-gradient method that allows for a natural integration o ...
2022
,
The goal of habitat suitability mapping is to predict the lo-cations in which a given species could be present. This is typically accomplished by statistical models which use envi-ronmental variables to predict species observation data. The relationship be ...
IEEE2022
"I choose this restaurant because they have vegan sandwiches" could be a typical explanation we would expect from a human. However, current Reinforcement Learning (RL) techniques are not able to provide such explanations, when trained on raw pixels. RL alg ...