Multi-agent reinforcement learning with graph convolutional neural networks for optimal bidding strategies of generation units in electricity markets
Related publications (130)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
A deep learning method for the particle trajectory reconstruction with the DAMPE experiment is presented. The developed algorithms constitute the first fully machine-learned track reconstruction pipeline for space astroparticle missions. Significant perfor ...
The success of deep learning may be attributed in large part to remarkable growth in the size and complexity of deep neural networks. However, present learning systems raise significant efficiency concerns and privacy: (1) currently, training systems are l ...
The real-time, and accurate inference of model parameters is of great importance in many scientific and engineering disciplines that use computational models (such as a digital twin) for the analysis and prediction of complex physical processes. However, f ...
Motivated by alternating game-play in two-player games, we study an altenating variant of the Online Linear Optimization (OLO). In alternating OLO, a learner at each round t ∈[n] selects a vector xt and then an adversary selects a cost-vector ct ∈[−1,1]n. ...
Prescribing optimal operation based on the condition of the system, and thereby potentially prolonging its remaining useful lifetime, has tremendous potential in terms of actively managing the availability, maintenance, and costs of complex systems. Reinfo ...
We consider model-based multi-agent reinforcement learning, where the environment transition model is unknown and can only be learned via expensive interactions with the environment. We propose H-MARL (Hallucinated Multi-Agent Reinforcement Learning), a no ...
A plethora of real world problems consist of a number of agents that interact, learn, cooperate, coordinate, and compete with others in ever more complex environments. Examples include autonomous vehicles, robotic agents, intelligent infrastructure, IoT de ...
An adaptive network consists of multiple communicating agents, equipped with sensing and learning abilities that allow them to extract meaningful information from measurements. The objective of the network is to solve a global inference problem in a decent ...
Lensless imaging provides a large panel of benefits : cost, size, weight, etc., that are crucial for wearable application, IoT or medical devices. Such setups require the design of reconstruction algorithms to recover the image from the captured measuremen ...
The convergence speed of machine learning models trained with Federated Learning is significantly affected by non-independent and identically distributed (non-IID) data partitions, even more so in a fully decentralized setting without a central server. In ...