Learning From Heterogeneous Data Based on Social Interactions Over Graphs
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This work studies the learning process over social networks under partial and random information sharing. In traditional social learning models, agents exchange full belief information with each other while trying to infer the true state of nature. We stud ...
The paper presents ICAP (interactive, constructive, active and passive) as the theoretical framework to understand the role of informal learning spaces as an active learning tool when students have informal meetings to work on projects. Students in our En ...
This study presents a self-supervised Bayesian Neural Network (BNN) framework using air-borne Acoustic Emission (AE) to identify different Laser Powder Bed Fusion (LPBF) process regimes such as Lack of Fusion, conduction mode, and keyhole without ground-tr ...
Students learn more when they are actively engaged in the learning process. While hands-on activities, labs and projects are moments when students are active, the learning benefits can be amplified with coaching strategies. This activity will enable studen ...
EPFL2024
Conversational tutoring systems (CTSs) offer a promising avenue for individualized learning support, especially in domains like persuasive writing. Although these systems have the potential to enhance the learning process, the specific role of learner cont ...
2024
,
Finding optimal bidding strategies for generation units in electricity markets would result in higher profit. However, it is a challenging problem due to the system uncertainty which is due to the lack of knowledge of the strategies of other generation uni ...
PERGAMON-ELSEVIER SCIENCE LTD2023
,
This paper considers the problem of resilient distributed optimization and stochastic learning in a server-based architecture. The system comprises a server and multiple agents, where each agent has its own local cost function. The agents collaborate with ...
Informative sample selection in an active learning (AL) setting helps a machine learning system attain optimum performance with minimum labeled samples, thus reducing annotation costs and boosting performance of computer-aided diagnosis systems in the pres ...
Amsterdam2024
, ,
We propose an interpretable model to score the subjective bias present in documents, based only on their textual content. Our model is trained on pairs of revisions of the same Wikipedia article, where one version is more biased than the other. Although pr ...
2024
,
This article reviews significant advances in networked signal and information processing (SIP), which have enabled in the last 25 years extending decision making and inference, optimization, control, and learning to the increasingly ubiquitous environments ...