Gauge theory (mathematics)In mathematics, and especially differential geometry and mathematical physics, gauge theory is the general study of connections on vector bundles, principal bundles, and fibre bundles. Gauge theory in mathematics should not be confused with the closely related concept of a gauge theory in physics, which is a field theory which admits gauge symmetry. In mathematics theory means a mathematical theory, encapsulating the general study of a collection of concepts or phenomena, whereas in the physical sense a gauge theory is a mathematical model of some natural phenomenon.
Rational varietyIn mathematics, a rational variety is an algebraic variety, over a given field K, which is birationally equivalent to a projective space of some dimension over K. This means that its function field is isomorphic to the field of all rational functions for some set of indeterminates, where d is the dimension of the variety. Let V be an affine algebraic variety of dimension d defined by a prime ideal I = ⟨f1, ..., fk⟩ in . If V is rational, then there are n + 1 polynomials g0, ..., gn in such that In order words, we have a of the variety.
Residue theoremIn complex analysis, the residue theorem, sometimes called Cauchy's residue theorem, is a powerful tool to evaluate line integrals of analytic functions over closed curves; it can often be used to compute real integrals and infinite series as well. It generalizes the Cauchy integral theorem and Cauchy's integral formula. The residue theorem should not be confused with special cases of the generalized Stokes' theorem; however, the latter can be used as an ingredient of its proof.
Moduli of algebraic curvesIn algebraic geometry, a moduli space of (algebraic) curves is a geometric space (typically a scheme or an algebraic stack) whose points represent isomorphism classes of algebraic curves. It is thus a special case of a moduli space. Depending on the restrictions applied to the classes of algebraic curves considered, the corresponding moduli problem and the moduli space is different. One also distinguishes between fine and coarse moduli spaces for the same moduli problem.
Pólya conjectureIn number theory, the Pólya conjecture (or Pólya's conjecture) stated that "most" (i.e., 50% or more) of the natural numbers less than any given number have an odd number of prime factors. The conjecture was set forth by the Hungarian mathematician George Pólya in 1919, and proved false in 1958 by C. Brian Haselgrove. Though mathematicians typically refer to this statement as the Pólya conjecture, Pólya never actually conjectured that the statement was true; rather, he showed that the truth of the statement would imply the Riemann hypothesis.
TheoryA theory is a rational type of abstract thinking about a phenomenon, or the results of such thinking. The process of contemplative and rational thinking is often associated with such processes as observational study or research. Theories may be scientific, belong to a non-scientific discipline, or no discipline at all. Depending on the context, a theory's assertions might, for example, include generalized explanations of how nature works. The word has its roots in ancient Greek, but in modern use it has taken on several related meanings.
Cramér's conjectureIn number theory, Cramér's conjecture, formulated by the Swedish mathematician Harald Cramér in 1936, is an estimate for the size of gaps between consecutive prime numbers: intuitively, that gaps between consecutive primes are always small, and the conjecture quantifies asymptotically just how small they must be. It states that where pn denotes the nth prime number, O is big O notation, and "log" is the natural logarithm.
Criticisms of globalizationCriticism of globalization is skepticism of the claimed benefits of globalization. Many of these views are held by the anti-globalization movement. Globalization has created much global and internal unrest in many countries. While the dynamics of capitalism is changing and each country is unique in its political makeup, globalization is a set-in-stone "program" that is difficult to implement without political unrest. Globalization can be partly responsible for the current global economic crisis.
Global citizenshipGlobal citizenship is the idea that one's identity transcends geography or political borders and that responsibilities or rights are derived from membership in a broader class: "humanity". This does not mean that such a person denounces or waives their nationality or other, more local identities, but that such identities are given "second place" to their membership in a global community. Extended, the idea leads to questions about the state of global society in the age of globalization.
Beal conjectureThe Beal conjecture is the following conjecture in number theory: If where A, B, C, x, y, and z are positive integers with x, y, z ≥ 3, then A, B, and C have a common prime factor. Equivalently, The equation has no solutions in positive integers and pairwise coprime integers A, B, C if x, y, z ≥ 3. The conjecture was formulated in 1993 by Andrew Beal, a banker and amateur mathematician, while investigating generalizations of Fermat's Last Theorem. Since 1997, Beal has offered a monetary prize for a peer-reviewed proof of this conjecture or a counterexample.