In algebraic geometry, a moduli space of (algebraic) curves is a geometric space (typically a scheme or an algebraic stack) whose points represent isomorphism classes of algebraic curves. It is thus a special case of a moduli space. Depending on the restrictions applied to the classes of algebraic curves considered, the corresponding moduli problem and the moduli space is different. One also distinguishes between fine and coarse moduli spaces for the same moduli problem.
The most basic problem is that of moduli of smooth complete curves of a fixed genus. Over the field of complex numbers these correspond precisely to compact Riemann surfaces of the given genus, for which Bernhard Riemann proved the first results about moduli spaces, in particular their dimensions ("number of parameters on which the complex structure depends").
The moduli stack classifies families of smooth projective curves, together with their isomorphisms. When , this stack may be compactified by adding new "boundary" points which correspond to stable nodal curves (together with their isomorphisms). A curve is stable if it is complete, connected, has no singularities other than double points, and has only a finite group of automorphisms. The resulting stack is denoted . Both moduli stacks carry universal families of curves.
Both stacks above have dimension ; hence a stable nodal curve can be completely specified by choosing the values of parameters, when . In lower genus, one must account for the presence of smooth families of automorphisms, by subtracting their number. There is exactly one complex curve of genus zero, the Riemann sphere, and its group of isomorphisms is PGL(2). Hence the dimension of is equal to
Likewise, in genus 1, there is a one-dimensional space of curves, but every such curve has a one-dimensional group of automorphisms. Hence, the stack has dimension 0.
It is a non-trivial theorem, proved by Pierre Deligne and David Mumford, that the moduli stack is irreducible, meaning it cannot be expressed as the union of two proper substacks.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This is a glossary of algebraic geometry. See also glossary of commutative algebra, glossary of classical algebraic geometry, and glossary of ring theory. For the number-theoretic applications, see glossary of arithmetic and Diophantine geometry. For simplicity, a reference to the base scheme is often omitted; i.e., a scheme will be a scheme over some fixed base scheme S and a morphism an S-morphism.
In mathematics, deformation theory is the study of infinitesimal conditions associated with varying a solution P of a problem to slightly different solutions Pε, where ε is a small number, or a vector of small quantities. The infinitesimal conditions are the result of applying the approach of differential calculus to solving a problem with constraints. The name is an analogy to non-rigid structures that deform slightly to accommodate external forces.
In mathematics a stack or 2-sheaf is, roughly speaking, a sheaf that takes values in categories rather than sets. Stacks are used to formalise some of the main constructions of descent theory, and to construct fine moduli stacks when fine moduli spaces do not exist. Descent theory is concerned with generalisations of situations where isomorphic, compatible geometrical objects (such as vector bundles on topological spaces) can be "glued together" within a restriction of the topological basis.
Ce cours traite des 3 sujets suivants : la perspective, la géométrie descriptive, et une initiation à la géométrie projective.
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
We will study classical and modern deformation theory of schemes and coherent sheaves. Participants should have a solid background in scheme-theory, for example being familiar with the first 3 chapter
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).
A trans-disciplinary approach in structural design and digital architecture of timber structures with advanced manufacturing workflow.
We define p-adic BPS or pBPS invariants for moduli spaces M-beta,M-chi of one-dimensional sheaves on del Pezzo and K3 surfaces by means of integration over a non-archimedean local field F. Our definition relies on a canonical measure mu can on the F-analyt ...
We develop a framework to construct moduli spaces of Q-Gorenstein pairs. To do so, we fix certain invariants; these choices are encoded in the notion of Q-stable pair. We show that these choices give a proper moduli space with projective coarse moduli spac ...
For the Bargmann-Fock field on R-d with d >= 3, we prove that the critical level l(c) (d) of the percolation model formed by the excursion sets {f >= l} is strictly positive. This implies that for every l sufficiently close to 0 (in particular for the noda ...