In algebraic geometry, a moduli space of (algebraic) curves is a geometric space (typically a scheme or an algebraic stack) whose points represent isomorphism classes of algebraic curves. It is thus a special case of a moduli space. Depending on the restrictions applied to the classes of algebraic curves considered, the corresponding moduli problem and the moduli space is different. One also distinguishes between fine and coarse moduli spaces for the same moduli problem. The most basic problem is that of moduli of smooth complete curves of a fixed genus. Over the field of complex numbers these correspond precisely to compact Riemann surfaces of the given genus, for which Bernhard Riemann proved the first results about moduli spaces, in particular their dimensions ("number of parameters on which the complex structure depends"). The moduli stack classifies families of smooth projective curves, together with their isomorphisms. When , this stack may be compactified by adding new "boundary" points which correspond to stable nodal curves (together with their isomorphisms). A curve is stable if it is complete, connected, has no singularities other than double points, and has only a finite group of automorphisms. The resulting stack is denoted . Both moduli stacks carry universal families of curves. Both stacks above have dimension ; hence a stable nodal curve can be completely specified by choosing the values of parameters, when . In lower genus, one must account for the presence of smooth families of automorphisms, by subtracting their number. There is exactly one complex curve of genus zero, the Riemann sphere, and its group of isomorphisms is PGL(2). Hence the dimension of is equal to Likewise, in genus 1, there is a one-dimensional space of curves, but every such curve has a one-dimensional group of automorphisms. Hence, the stack has dimension 0. It is a non-trivial theorem, proved by Pierre Deligne and David Mumford, that the moduli stack is irreducible, meaning it cannot be expressed as the union of two proper substacks.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.