Publication

Improved Network-Calculus Nodal Delay-Bounds in Time-Sensitive Networks

Abstract

In time-sensitive networks, bounds on worst-case delays are typically obtained by using network calculus and assuming that flows are constrained by bit-level arrival curves. However, in IEEE TSN or IETF DetNet, source flows are constrained on the number of packets rather than bits. A common approach to obtain a delay bound is to derive a bit-level arrival curve from a packet-level arrival curve. However, such a method is not tight: we show that better bounds can be obtained by directly exploiting the arrival curves expressed at the packet level. Our analysis method also obtains better bounds when flows are constrained with g-regulation, such as the recently proposed Length-Rate Quotient rule. It can also be used to generalize some recently proposed network-calculus delay-bounds for a service curve element with known transmission rate.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (15)
Gray code
The reflected binary code (RBC), also known as reflected binary (RB) or Gray code after Frank Gray, is an ordering of the binary numeral system such that two successive values differ in only one bit (binary digit). For example, the representation of the decimal value "1" in binary would normally be "" and "2" would be "". In Gray code, these values are represented as "" and "". That way, incrementing a value from 1 to 2 requires only one bit to change, instead of two.
Bit rate
In telecommunications and computing, bit rate (bitrate or as a variable R) is the number of bits that are conveyed or processed per unit of time. The bit rate is expressed in the unit bit per second (symbol: bit/s), often in conjunction with an SI prefix such as kilo (1 kbit/s = 1,000 bit/s), mega (1 Mbit/s = 1,000 kbit/s), giga (1 Gbit/s = 1,000 Mbit/s) or tera (1 Tbit/s = 1,000 Gbit/s). The non-standard abbreviation bps is often used to replace the standard symbol bit/s, so that, for example, 1 Mbps is used to mean one million bits per second.
Data signaling rate
In telecommunication, data signaling rate (DSR), also known as gross bit rate, is the aggregate rate at which data passes a point in the transmission path of a data transmission system. The DSR is usually expressed in bits per second. The data signaling rate is given by where m is the number of parallel channels, ni is the number of significant conditions of the modulation in the i-th channel, and Ti is the unit interval, expressed in seconds, for the i-th channel.
Show more
Related publications (20)

Time vs. Truth: Age-Distortion Tradeoffs and Strategies for Distributed Inference

Yunus Inan

In 1948, Claude Shannon laid the foundations of information theory, which grew out of a study to find the ultimate limits of source compression, and of reliable communication. Since then, information theory has proved itself not only as a quest to find the ...
EPFL2023

A Network Calculus Analysis of Asynchronous Mechanisms in Time-Sensitive Networks

Ehsan Mohammadpour

Time-sensitive networks provide worst-case guarantees for applications in domains such as the automobile, automation, avionics, and the space industries. A violation of these guarantees can cause considerable financial loss and serious damage to human live ...
EPFL2023

Analysis of Dampers in Time-Sensitive Networks With Non-Ideal Clocks

Jean-Yves Le Boudec, Ehsan Mohammadpour

Dampers are devices that reduce delay jitter in the context of time-sensitive networks, by delaying packets for the amount written in packet headers. Jitter reduction is required by some real-time applications; beyond this, dampers have the potential to so ...
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC2022
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.