Publication

Effect of triangularity on plasma turbulence and the SOL-width scaling in L-mode diverted tokamak configurations

Abstract

The effect of triangularity on tokamak boundary plasma turbulence is investigated using global, flux-driven, three-dimensional, two-fluid simulations. The simulations show that negative triangularity (NT) stabilizes boundary plasma turbulence, and linear investigations reveal that this is due to a reduction of the magnetic curvature driven by interchange instabilities, such as the resistive ballooning mode (RBM). As a consequence, the pressure decay length L ( p ), related to the scrape-off layer (SOL) power fall-off length lambda ( q ), is found to be affected by triangularity. Leveraging considerations on the effect of triangularity on the linear growth rate and nonlinear evolution of the RBM, the analytical theory-based scaling law for L ( p ) in L-mode plasmas, derived by Giacomin et al (2021 Nucl. Fusion 61 076002), is extended to include the effect of triangularity. The scaling is in agreement with nonlinear simulations and a multi-machine experimental database, which includes recent TCV discharges dedicated to the study of the effect of triangularity in L-mode diverted discharges. Overall, the present results highlight that NT narrows the L ( p ) and considering the effect of triangularity is important for a reliable extrapolation of lambda ( q ) from present experiments to larger devices.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related concepts (31)
Tokamak
A tokamak (ˈtoʊkəmæk; токамáк) is a device which uses a powerful magnetic field to confine plasma in the shape of a torus. The tokamak is one of several types of magnetic confinement devices being developed to produce controlled thermonuclear fusion power. , it was the leading candidate for a practical fusion reactor. Tokamaks were initially conceptualized in the 1950s by Soviet physicists Igor Tamm and Andrei Sakharov, inspired by a letter by Oleg Lavrentiev. The first working tokamak was attributed to the work of Natan Yavlinsky on the T-1 in 1958.
Magnetic confinement fusion
Magnetic confinement fusion is an approach to generate thermonuclear fusion power that uses magnetic fields to confine fusion fuel in the form of a plasma. Magnetic confinement is one of two major branches of fusion energy research, along with inertial confinement fusion. The magnetic approach began in the 1940s and absorbed the majority of subsequent development. Fusion reactions combine light atomic nuclei such as hydrogen to form heavier ones such as helium, producing energy.
Interchange instability
The interchange instability, also known as the Kruskal–Schwarzchild instability or flute instability, is a type of plasma instability seen in magnetic fusion energy that is driven by the gradients in the magnetic pressure in areas where the confining magnetic field is curved. The name of the instability refers to the action of the plasma changing position with the magnetic field lines (i.e. an interchange of the lines of force in space) without significant disturbance to the geometry of the external field.
Show more
Related publications (39)

Experiments and gyrokinetic simulations of TCV plasmas with negative triangularity in view of DTT operations

Olivier Sauter, Stefano Coda, Justin Richard Ball, Alberto Mariani, Matteo Vallar, Filippo Bagnato

Negative triangularity (NT) scenarios in TCV have been compared to positive triangularity (PT) scenarios using the same plasma shapes foreseen for divertor tokamak test tokamak operations. The experiments provided a NT/PT L-mode pair and a PT H-mode with d ...
Iop Publishing Ltd2024

Towards practical reinforcement learning for tokamak magnetic control

Federico Alberto Alfredo Felici, Cristian Galperti, Jonas Buchli, Brendan Tracey

Reinforcement learning (RL) has shown promising results for real-time control systems, including the domain of plasma magnetic control. However, there are still significant drawbacks compared to traditional feedback control approaches for magnetic confinem ...
Lausanne2024

An experimental and computational study of tokamak plasma turbulence

Aylwin Iantchenko

Turbulence driven by small-scale instabilities results in strong heat and particle transport, which significantly shortens the confinement time and prevents the formation of a self-sustained plasma reaction in magnetic confinement devices. Control and poss ...
EPFL2023
Show more
Related MOOCs (16)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.