Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Nuclear magnetic resonance (NMR) is a physical phenomenon that is widely used in the biomedical field due to its non-invasive and non-destructive properties, which make it an optimal tool for the in vivo investigation of living organs such as the brain. Th ...
The transverse relaxation rates R (2) = 1/T (2) of protons can be determined by spin-echo sequences with multiple refocusing pulses using moderate radio-frequency field strengths and properly chosen inter-pulse delays so as to suppress echo modulations due ...
Springer Vienna2012
Purpose: To measure the proton density (PD), the T1 and T2 relaxation time, and magnetization transfer (MT) effects in human median nerve at 3 T and to compare them with the corresponding values in muscle. ...
Wiley-Blackwell2009
The concept of second order proton traps (consisting of an inductor and two capacitors) in coils for non-proton NMR allows control over the resonance frequency, the blocking frequency and the trap mode frequency. Effective proton traps with relatively high ...
2011
, , , , , ,
Major breakthroughs have recently been reported that can help overcome two inherent drawbacks of NMR: the lack of sensitivity and the limited memory of longitudinal magnetization. Dynamic nuclear polarization (DNP) couples nuclear spins to the large reserv ...
2009
Developments towards an understanding of the nature of conductance at the interface between two different metallic layers – ferromagnetic and non magnetic – as well as the discovery of giant magnetoresistance have stirred attention from both the scientific ...
Within a collaboration with the Sample Environment and Polarised Targets (SEPT) group at Paul Scherrer Institut (PSI), we developed two Dynamic Nuclear Polarization (DNP) machines operating at ~ 1 K. The first one is working at an electron spin resonance f ...
The phenomenon of magnetism is one of the key components of today's technological progress. Magnetic interactions and magnetic materials are essential for the scientific disciplines of physics, chemistry and biology, making this subject truly multidiscipli ...
Nuclear magnetic relaxation in the presence of paramagnetic centres has gained increasing interest in recent years partly due to its importance for contrast agents in magnetic resonance imaging. Rational design of new more efficient agents is possible as a ...
Pulsed Field Gradients (PFGs) have become ubiquitous tools not only for Magnetic Resonance Imaging (MRI), but also for NMR experiments designed to study translational diffusion, for spatial encoding in ultra-fast spectroscopy, for the selection of desirabl ...