**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# Euclid preparation XXIV. Calibration of the halo mass function in λ(ν)CDM cosmologies

Frédéric Courbin, Georges Meylan, Gianluca Castignani, Austin Chandler Peel, Maurizio Martinelli, Slobodan Ilic, Yi Wang, Fabio Finelli, Marcello Farina

2023

Journal paper

2023

Journal paper

Abstract

Euclid's photometric galaxy cluster survey has the potential to be a very competitive cosmological probe. The main cosmological probe with observations of clusters is their number count, within which the halo mass function (HMF) is a key theoretical quantity. We present a new calibration of the analytic HMF, at the level of accuracy and precision required for the uncertainty in this quantity to be subdominant with respect to other sources of uncertainty in recovering cosmological parameters from Euclid cluster counts. Our model is calibrated against a suite of N-body simulations using a Bayesian approach taking into account systematic errors arising from numerical effects in the simulation. First, we test the convergence of HMF predictions from different N-body codes, by using initial conditions generated with different orders of Lagrangian Perturbation theory, and adopting different simulation box sizes and mass resolution. Then, we quantify the effect of using different halo finder algorithms, and how the resulting differences propagate to the cosmological constraints. In order to trace the violation of universality in the HMF, we also analyse simulations based on initial conditions characterised by scale-free power spectra with different spectral indexes, assuming both Einstein-de Sitter and standard λCDM expansion histories. Based on these results, we construct a fitting function for the HMF that we demonstrate to be sub-percent accurate in reproducing results from 9 different variants of the λCDM model including massive neutrinos cosmologies. The calibration systematic uncertainty is largely sub-dominant with respect to the expected precision of future mass-observation relations; with the only notable exception of the effect due to the halo finder, that could lead to biased cosmological inference.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (60)

Ontological neighbourhood

Related concepts (36)

Related MOOCs (5)

Non-standard cosmology

A non-standard cosmology is any physical cosmological model of the universe that was, or still is, proposed as an alternative to the then-current standard model of cosmology. The term non-standard is applied to any theory that does not conform to the scientific consensus. Because the term depends on the prevailing consensus, the meaning of the term changes over time. For example, hot dark matter would not have been considered non-standard in 1990, but would be in 2010.

Physical cosmology

Physical cosmology is a branch of cosmology concerned with the study of cosmological models. A cosmological model, or simply cosmology, provides a description of the largest-scale structures and dynamics of the universe and allows study of fundamental questions about its origin, structure, evolution, and ultimate fate. Cosmology as a science originated with the Copernican principle, which implies that celestial bodies obey identical physical laws to those on Earth, and Newtonian mechanics, which first allowed those physical laws to be understood.

Expansion of the universe

The expansion of the universe is the increase in distance between gravitationally unbound parts of the observable universe with time. It is an intrinsic expansion; the universe does not expand "into" anything and does not require space to exist "outside" it. To any observer in the universe, it appears that all but the nearest galaxies (which are bound by gravity) recede at speeds that are proportional to their distance from the observer, on average.

The Radio Sky I: Science and Observations

Be captivated by the exotic objects that populate the Radio Sky and gain a solid understanding of their physics and the fundamental techniques we use to observe them.

Introduction to Astrophysics

Ce cours décrit les principaux concepts physiques utilisés en astrophysique. Il est proposé à l'EPFL aux étudiants de 2eme année de Bachelor en physique.

Introduction à l'Astrophysique

Ce cours décrit les principaux concepts physiques utilisés en astrophysique. Il est proposé à l'EPFL aux étudiants de 2eme année de Bachelor en physique.

Frédéric Courbin, Georges Meylan, Gianluca Castignani, Austin Chandler Peel, Maurizio Martinelli, Yi Wang, Richard Massey, Fabio Finelli, Marcello Farina

This work considers which higher order modeling e ffects on the cosmic shear angular power spectra must be taken into account for Euclid. We identified the relevant terms and quantified their individual and cumulative impact on the cosmological parameter i ...

Measurements of large-scale structure (LSS), as performed on the largest 3D map of over two million extragalactic sources from the Sloan Digital Sky Survey, together with measurements of the cosmic microwave background (CMB) anisotropies, are in complete a ...

Frédéric Courbin, Georges Meylan, Gianluca Castignani, Maurizio Martinelli, Malte Tewes, Slobodan Ilic, Alessandro Pezzotta, Yi Wang, Richard Massey, Fabio Finelli, Marcello Farina

Context. The cosmological surveys that are planned for the current decade will provide us with unparalleled observations of the distribution of galaxies on cosmic scales, by means of which we can probe the underlying large-scale structure (LSS) of the Univ ...