Quantum Fourier transformIn quantum computing, the quantum Fourier transform (QFT) is a linear transformation on quantum bits, and is the quantum analogue of the discrete Fourier transform. The quantum Fourier transform is a part of many quantum algorithms, notably Shor's algorithm for factoring and computing the discrete logarithm, the quantum phase estimation algorithm for estimating the eigenvalues of a unitary operator, and algorithms for the hidden subgroup problem. The quantum Fourier transform was discovered by Don Coppersmith.
Quantum supremacyIn quantum computing, quantum supremacy, quantum primacy or quantum advantage is the goal of demonstrating that a programmable quantum computer can solve a problem that no classical computer can solve in any feasible amount of time, irrespective of the usefulness of the problem. The term was coined by John Preskill in 2012, but the concept dates back to Yuri Manin's 1980 and Richard Feynman's 1981 proposals of quantum computing.
Lie algebra extensionIn the theory of Lie groups, Lie algebras and their representation theory, a Lie algebra extension e is an enlargement of a given Lie algebra g by another Lie algebra h. Extensions arise in several ways. There is the trivial extension obtained by taking a direct sum of two Lie algebras. Other types are the split extension and the central extension. Extensions may arise naturally, for instance, when forming a Lie algebra from projective group representations. Such a Lie algebra will contain central charges.
Object of the mindAn object of the mind is an object that exists in the imagination, but which, in the real world, can only be represented or modeled. Some such objects are abstractions, literary concepts, or fictional scenarios. Closely related are intentional objects, which are what thoughts and feelings are about, even if they are not about anything real (such as thoughts about unicorns, or feelings of apprehension about a dental appointment which is subsequently cancelled).
Category of small categoriesIn mathematics, specifically in , the category of small categories, denoted by Cat, is the whose objects are all and whose morphisms are functors between categories. Cat may actually be regarded as a with natural transformations serving as 2-morphisms. The initial object of Cat is the empty category 0, which is the category of no objects and no morphisms. The terminal object is the terminal category or trivial category 1 with a single object and morphism. The category Cat is itself a , and therefore not an object of itself.
Quantum dotQuantum dots (QDs) – also called semiconductor nanocrystals, are semiconductor particles a few nanometres in size, having optical and electronic properties that differ from those of larger particles as a result of quantum mechanics. They are a central topic in nanotechnology and materials science. When the quantum dots are illuminated by UV light, an electron in the quantum dot can be excited to a state of higher energy. In the case of a semiconducting quantum dot, this process corresponds to the transition of an electron from the valence band to the conductance band.
Theory of categoriesIn ontology, the theory of categories concerns itself with the categories of being: the highest genera or kinds of entities according to Amie Thomasson. To investigate the categories of being, or simply categories, is to determine the most fundamental and the broadest classes of entities. A distinction between such categories, in making the categories or applying them, is called an ontological distinction. Various systems of categories have been proposed, they often include categories for substances, properties, relations, states of affairs or events.
Detached objectDetached objects are a dynamical class of minor planets in the outer reaches of the Solar System and belong to the broader family of trans-Neptunian objects (TNOs). These objects have orbits whose points of closest approach to the Sun (perihelion) are sufficiently distant from the gravitational influence of Neptune that they are only moderately affected by Neptune and the other known planets: This makes them appear to be "detached" from the rest of the Solar System, except for their attraction to the Sun.
Initial and terminal objectsIn , a branch of mathematics, an initial object of a C is an object I in C such that for every object X in C, there exists precisely one morphism I → X. The notion is that of a terminal object (also called terminal element): T is terminal if for every object X in C there exists exactly one morphism X → T. Initial objects are also called coterminal or universal, and terminal objects are also called final. If an object is both initial and terminal, it is called a zero object or null object.
CW complexA CW complex (also called cellular complex or cell complex) is a kind of a topological space that is particularly important in algebraic topology. It was introduced by J. H. C. Whitehead to meet the needs of homotopy theory. This class of spaces is broader and has some better properties than simplicial complexes, but still retains a combinatorial nature that allows for computation (often with a much smaller complex). The C stands for "closure-finite", and the W for "weak" topology.