Higgs mechanismIn the Standard Model of particle physics, the Higgs mechanism is essential to explain the generation mechanism of the property "mass" for gauge bosons. Without the Higgs mechanism, all bosons (one of the two classes of particles, the other being fermions) would be considered massless, but measurements show that the W+, W−, and Z0 bosons actually have relatively large masses of around 80 GeV/c2. The Higgs field resolves this conundrum. The simplest description of the mechanism adds a quantum field (the Higgs field) which permeates all of space to the Standard Model.
Higgs bosonThe Higgs boson, sometimes called the Higgs particle, is an elementary particle in the Standard Model of particle physics produced by the quantum excitation of the Higgs field, one of the fields in particle physics theory. In the Standard Model, the Higgs particle is a massive scalar boson with zero spin, even (positive) parity, no electric charge, and no colour charge that couples to (interacts with) mass. It is also very unstable, decaying into other particles almost immediately upon generation.
Effective field theoryIn physics, an effective field theory is a type of approximation, or effective theory, for an underlying physical theory, such as a quantum field theory or a statistical mechanics model. An effective field theory includes the appropriate degrees of freedom to describe physical phenomena occurring at a chosen length scale or energy scale, while ignoring substructure and degrees of freedom at shorter distances (or, equivalently, at higher energies).
Scalar field theoryIn theoretical physics, scalar field theory can refer to a relativistically invariant classical or quantum theory of scalar fields. A scalar field is invariant under any Lorentz transformation. The only fundamental scalar quantum field that has been observed in nature is the Higgs field. However, scalar quantum fields feature in the effective field theory descriptions of many physical phenomena. An example is the pion, which is actually a pseudoscalar.
Quantum field theoryIn theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and in condensed matter physics to construct models of quasiparticles. QFT treats particles as excited states (also called quanta) of their underlying quantum fields, which are more fundamental than the particles.
Vacuum expectation valueIn quantum field theory the vacuum expectation value (also called condensate or simply VEV) of an operator is its average or expectation value in the vacuum. The vacuum expectation value of an operator O is usually denoted by One of the most widely used examples of an observable physical effect that results from the vacuum expectation value of an operator is the Casimir effect. This concept is important for working with correlation functions in quantum field theory. It is also important in spontaneous symmetry breaking.
Standard ModelThe Standard Model of particle physics is the theory describing three of the four known fundamental forces (electromagnetic, weak and strong interactions – excluding gravity) in the universe and classifying all known elementary particles. It was developed in stages throughout the latter half of the 20th century, through the work of many scientists worldwide, with the current formulation being finalized in the mid-1970s upon experimental confirmation of the existence of quarks.
Basis (linear algebra)In mathematics, a set B of vectors in a vector space V is called a basis (: bases) if every element of V may be written in a unique way as a finite linear combination of elements of B. The coefficients of this linear combination are referred to as components or coordinates of the vector with respect to B. The elements of a basis are called . Equivalently, a set B is a basis if its elements are linearly independent and every element of V is a linear combination of elements of B.
Effective actionIn quantum field theory, the quantum effective action is a modified expression for the classical action taking into account quantum corrections while ensuring that the principle of least action applies, meaning that extremizing the effective action yields the equations of motion for the vacuum expectation values of the quantum fields. The effective action also acts as a generating functional for one-particle irreducible correlation functions.
Quantum vacuum stateIn quantum field theory, the quantum vacuum state (also called the quantum vacuum or vacuum state) is the quantum state with the lowest possible energy. Generally, it contains no physical particles. The term zero-point field is sometimes used as a synonym for the vacuum state of a quantized field which is completely individual. According to present-day understanding of what is called the vacuum state or the quantum vacuum, it is "by no means a simple empty space".