Self-correcting quantum many-body control using reinforcement learning with tensor networks
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Quantum computing has made significant progress in recent years, with Google and IBM releasing quantum computers with 72 and 50 qubits, respectively. Google has also achieved quantum supremacy with its 54-qubit device, and IBM has announced the release of ...
Artificial intelligence, particularly the subfield of machine learning, has seen a paradigm shift towards data-driven models that learn from and adapt to data. This has resulted in unprecedented advancements in various domains such as natural language proc ...
Measuring bathymetry has always been a major scientific and technological challenge. In this work, we used a deep learning technique for inferring bathymetry from the depth-averaged velocity field. The training of the neural network is based on 5742 labora ...
Deep neural networks have become ubiquitous in today's technological landscape, finding their way in a vast array of applications. Deep supervised learning, which relies on large labeled datasets, has been particularly successful in areas such as image cla ...
The variational approach is a cornerstone of computational physics, considering both conventional and quantum computing computational platforms. The variational quantum eigensolver algorithm aims to prepare the ground state of a Hamiltonian exploiting para ...
An enduring challenge in constructing mechanical-oscillator-based hybrid quantum systems is to ensure engineered coupling to an auxiliary degree of freedom and maintain good mechanical isolation from the environment, that is, low quantum decoherence, consi ...
A new paradigm for data science has emerged, with quantum data, quantum models, and quantum computational devices. This field, called quantum machine learning (QML), aims to achieve a speedup over traditional machine learning for data analysis. However, it ...
Local Hamiltonians of fermionic systems on a lattice can be mapped onto local qubit Hamiltonians. Maintaining the lo-cality of the operators comes at the ex-pense of increasing the Hilbert space with auxiliary degrees of freedom. In order to retrieve the l ...
VEREIN FORDERUNG OPEN ACCESS PUBLIZIERENS QUANTENWISSENSCHAF2023
A crucial milestone in the field of quantum simulation and computation is to demonstrate that a quantum device can perform a computation task that is classically intractable. A key question is to identify setups that can achieve such goal within current te ...
The task of learning a quantum circuit to prepare a given mixed state is a fundamental quantum subroutine. We present a variational quantum algorithm (VQA) to learn mixed states which is suitable for near-term hardware. Our algorithm represents a generaliz ...