Matrix (mathematics)In mathematics, a matrix (plural matrices) is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object. For example, is a matrix with two rows and three columns. This is often referred to as a "two by three matrix", a " matrix", or a matrix of dimension . Without further specifications, matrices represent linear maps, and allow explicit computations in linear algebra.
Computational complexity of matrix multiplicationIn theoretical computer science, the computational complexity of matrix multiplication dictates how quickly the operation of matrix multiplication can be performed. Matrix multiplication algorithms are a central subroutine in theoretical and numerical algorithms for numerical linear algebra and optimization, so finding the right amount of time it should take is of major practical relevance. Directly applying the mathematical definition of matrix multiplication gives an algorithm that requires n3 field operations to multiply two n × n matrices over that field (Θ(n3) in big O notation).
Floating-point arithmeticIn computing, floating-point arithmetic (FP) is arithmetic that represents subsets of real numbers using an integer with a fixed precision, called the significand, scaled by an integer exponent of a fixed base. Numbers of this form are called floating-point numbers. For example, 12.345 is a floating-point number in base ten with five digits of precision: However, unlike 12.345, 12.3456 is not a floating-point number in base ten with five digits of precision—it needs six digits of precision; the nearest floating-point number with only five digits is 12.
Matrix multiplication algorithmBecause matrix multiplication is such a central operation in many numerical algorithms, much work has been invested in making matrix multiplication algorithms efficient. Applications of matrix multiplication in computational problems are found in many fields including scientific computing and pattern recognition and in seemingly unrelated problems such as counting the paths through a graph. Many different algorithms have been designed for multiplying matrices on different types of hardware, including parallel and distributed systems, where the computational work is spread over multiple processors (perhaps over a network).
Quadruple-precision floating-point formatIn computing, quadruple precision (or quad precision) is a binary floating point–based computer number format that occupies 16 bytes (128 bits) with precision at least twice the 53-bit double precision. This 128-bit quadruple precision is designed not only for applications requiring results in higher than double precision, but also, as a primary function, to allow the computation of double precision results more reliably and accurately by minimising overflow and round-off errors in intermediate calculations and scratch variables.
Sparse matrixIn numerical analysis and scientific computing, a sparse matrix or sparse array is a matrix in which most of the elements are zero. There is no strict definition regarding the proportion of zero-value elements for a matrix to qualify as sparse but a common criterion is that the number of non-zero elements is roughly equal to the number of rows or columns. By contrast, if most of the elements are non-zero, the matrix is considered dense. The number of zero-valued elements divided by the total number of elements (e.
Parallel computingParallel computing is a type of computation in which many calculations or processes are carried out simultaneously. Large problems can often be divided into smaller ones, which can then be solved at the same time. There are several different forms of parallel computing: bit-level, instruction-level, data, and task parallelism. Parallelism has long been employed in high-performance computing, but has gained broader interest due to the physical constraints preventing frequency scaling.
FLOPSIn computing, floating point operations per second (FLOPS, flops or flop/s) is a measure of computer performance, useful in fields of scientific computations that require floating-point calculations. For such cases, it is a more accurate measure than measuring instructions per second. Floating-point arithmetic is needed for very large or very small real numbers, or computations that require a large dynamic range. Floating-point representation is similar to scientific notation, except everything is carried out in base two, rather than base ten.
Matrix normIn mathematics, a matrix norm is a vector norm in a vector space whose elements (vectors) are matrices (of given dimensions). Given a field of either real or complex numbers, let be the K-vector space of matrices with rows and columns and entries in the field . A matrix norm is a norm on . This article will always write such norms with double vertical bars (like so: ).
Floating-point unitA floating-point unit (FPU, colloquially a math coprocessor) is a part of a computer system specially designed to carry out operations on floating-point numbers. Typical operations are addition, subtraction, multiplication, division, and square root. Some FPUs can also perform various transcendental functions such as exponential or trigonometric calculations, but the accuracy can be very low, so that some systems prefer to compute these functions in software.