Matrice (mathématiques)thumb|upright=1.5 En mathématiques, les matrices sont des tableaux d'éléments (nombres, caractères) qui servent à interpréter en termes calculatoires, et donc opérationnels, les résultats théoriques de l'algèbre linéaire et même de l'algèbre bilinéaire. Toutes les disciplines étudiant des phénomènes linéaires utilisent les matrices. Quant aux phénomènes non linéaires, on en donne souvent des approximations linéaires, comme en optique géométrique avec les approximations de Gauss.
Complexité de la multiplication de matricesEn informatique théorique, la complexité de la multiplication de matrices est le nombre d'opérations requises pour l'opération de produit matriciel. Les algorithmes de multiplication de matrices constituent un sujet central dans les algorithmes théoriques et numériques en algèbre linéaire numérique et en optimisation, donc déterminer la complexité en temps du produit est d'une importance pratique. L'application directe de la définition mathématique de la multiplication de matrices donne un algorithme qui nécessite opérations sur le corps de base pour multiplier deux matrices d'ordre .
Virgule flottantevignette|Comme la notation scientifique, le nombre à virgule flottante a une mantisse et un exposant. La virgule flottante est une méthode d'écriture de nombres fréquemment utilisée dans les ordinateurs, équivalente à la notation scientifique en numération binaire. Elle consiste à représenter un nombre par : un signe (égal à −1 ou 1) ; une mantisse (aussi appelée significande) ; et un exposant (entier relatif, généralement borné).
Matrix multiplication algorithmBecause matrix multiplication is such a central operation in many numerical algorithms, much work has been invested in making matrix multiplication algorithms efficient. Applications of matrix multiplication in computational problems are found in many fields including scientific computing and pattern recognition and in seemingly unrelated problems such as counting the paths through a graph. Many different algorithms have been designed for multiplying matrices on different types of hardware, including parallel and distributed systems, where the computational work is spread over multiple processors (perhaps over a network).
Quadruple-precision floating-point formatIn computing, quadruple precision (or quad precision) is a binary floating point–based computer number format that occupies 16 bytes (128 bits) with precision at least twice the 53-bit double precision. This 128-bit quadruple precision is designed not only for applications requiring results in higher than double precision, but also, as a primary function, to allow the computation of double precision results more reliably and accurately by minimising overflow and round-off errors in intermediate calculations and scratch variables.
Matrice creuseDans la discipline de l'analyse numérique des mathématiques, une matrice creuse est une matrice contenant beaucoup de zéros. Conceptuellement, les matrices creuses correspondent aux systèmes qui sont peu couplés. Si on considère une ligne de balles dont chacune est reliée à ses voisines directes par des élastiques, ce système serait représenté par une matrice creuse. Au contraire, si chaque balle de la ligne est reliée à toutes les autres balles, ce système serait représenté par une matrice dense.
Parallélisme (informatique)vignette|upright=1|Un des éléments de Blue Gene L cabinet, un des supercalculateurs massivement parallèles les plus rapides des années 2000. En informatique, le parallélisme consiste à mettre en œuvre des architectures d'électronique numérique permettant de traiter des informations de manière simultanée, ainsi que les algorithmes spécialisés pour celles-ci. Ces techniques ont pour but de réaliser le plus grand nombre d'opérations en un temps le plus petit possible.
FLOPSLe nombre d'opérations en virgule flottante par seconde ( ou FLOPS) est une unité de mesure de la rapidité de calcul d'un système informatique et donc d'une partie de sa performance. Les opérations en virgule flottante (additions ou multiplications) sont des opérations qui permettent des calculs représentant de très grands et de très petits nombres représentés par une mantisse et un exposant. De telles opérations prennent plus de temps de calcul que des opérations sur les nombres entiers et sont utilisées dans certains types d'applications.
Norme matricielleEn mathématiques, une norme matricielle est un cas particulier de norme vectorielle, sur un espace de matrices. Dans ce qui suit, K désigne le corps des réels ou des complexes. Certains auteurs définissent une norme matricielle comme étant simplement une norme sur un espace vectoriel M(K) de matrices à m lignes et n colonnes à coefficients dans K. Pour d'autres, une norme matricielle est seulement définie sur une algèbre M(K) de matrices carrées et est une norme d'algèbre, c'est-à-dire qu'elle est de plus sous-multiplicative.
Unité de calcul en virgule flottantethumbnail|Le Motorola 68882, un coprocesseur arithmétique. Une unité de calcul en virgule flottante (UVF, en anglais floating-point unit, FPU) est une partie d'un processeur, spécialement conçue pour effectuer des opérations sur des nombres à virgule flottante. Tous les processeurs incorporent au moins l'addition, la soustraction et la multiplication. L'opération fused multiply–add (multiplication suivie d'une addition, avec un seul arrondi), requise par la norme IEEE 754 dans sa révision de 2008, est de plus en plus implémentée.