Thermoelectric materialsThermoelectric materials show the thermoelectric effect in a strong or convenient form. The thermoelectric effect refers to phenomena by which either a temperature difference creates an electric potential or an electric current creates a temperature difference. These phenomena are known more specifically as the Seebeck effect (creating a voltage from temperature difference), Peltier effect (driving heat flow with an electric current), and Thomson effect (reversible heating or cooling within a conductor when there is both an electric current and a temperature gradient).
Direct and indirect band gapsIn semiconductor physics, the band gap of a semiconductor can be of two basic types, a direct band gap or an indirect band gap. The minimal-energy state in the conduction band and the maximal-energy state in the valence band are each characterized by a certain crystal momentum (k-vector) in the Brillouin zone. If the k-vectors are different, the material has an "indirect gap". The band gap is called "direct" if the crystal momentum of electrons and holes is the same in both the conduction band and the valence band; an electron can directly emit a photon.
Indentation styleIn computer programming, an indentation style is a convention governing the indentation of blocks of code to convey program structure. This article largely addresses the free-form languages, such as C and its descendants, but can be (and often is) applied to most other programming languages (especially those in the curly bracket family), where whitespace is otherwise insignificant. Indentation style is only one aspect of programming style. Indentation is not a requirement of most programming languages, where it is used as secondary notation.
Electric organ (fish)In biology, the electric organ is an organ that an electric fish uses to create an electric field. Electric organs are derived from modified muscle or in some cases nerve tissue, and have evolved at least six times among the elasmobranchs and teleosts. These fish use their electric discharges for navigation, communication, mating, defence, and in strongly electric fish also for the incapacitation of prey. The electric organs of two strongly electric fish, the torpedo ray and the electric eel were first studied in the 1770s by John Walsh, Hugh Williamson, and John Hunter.