Publication

RUM: Reconfigurable Umbrella Mesh

Abstract

We propose Reconfigurable Umbrella Meshes (RUMs), a new class of preassembled deployable structures. A RUM has a compact rest state that can be easily altered to deploy into different bending-active 3D target shapes. RUMs consist of elastic beams and rigid plates connected by hinge joints and can be assembled in a stress-free fabrication state. The key principle of a RUM is that it encodes the desired deployment shape in the height distribution of its constituent cells. Reconfigurability is achieved by introducing sliding joints to connect the elastic beams with the rigid plates to allow adapting the cell heights. We demonstrate that even for small variations in the cell heights, RUMs can capture a diverse range of shapes. Assembled from identical cells that can be mass-produced, a RUM can deploy into several desired shapes, which makes them well suited for reusable temporary structures. We provide a computational design tool based on physical simulation, where users can interactively edit cell heights to explore achievable deployed shapes. Numerical optimization enables designers to easily navigate between the reconfigurable design parameters and the deployed shape space. We validate our approach with a physical prototype and demonstrate its various deployed states.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (33)
Continuous uniform distribution
In probability theory and statistics, the continuous uniform distributions or rectangular distributions are a family of symmetric probability distributions. Such a distribution describes an experiment where there is an arbitrary outcome that lies between certain bounds. The bounds are defined by the parameters, and which are the minimum and maximum values. The interval can either be closed (i.e. ) or open (i.e. ). Therefore, the distribution is often abbreviated where stands for uniform distribution.
Degenerate distribution
In mathematics, a degenerate distribution is, according to some, a probability distribution in a space with support only on a manifold of lower dimension, and according to others a distribution with support only at a single point. By the latter definition, it is a deterministic distribution and takes only a single value. Examples include a two-headed coin and rolling a die whose sides all show the same number. This distribution satisfies the definition of "random variable" even though it does not appear random in the everyday sense of the word; hence it is considered degenerate.
Cauchy distribution
The Cauchy distribution, named after Augustin Cauchy, is a continuous probability distribution. It is also known, especially among physicists, as the Lorentz distribution (after Hendrik Lorentz), Cauchy–Lorentz distribution, Lorentz(ian) function, or Breit–Wigner distribution. The Cauchy distribution is the distribution of the x-intercept of a ray issuing from with a uniformly distributed angle. It is also the distribution of the ratio of two independent normally distributed random variables with mean zero.
Show more
Related publications (34)

Instabilities in Elastic and Magneto-Elastic Beams and Shells: from Shell Buckling to the Design of a Programmable Braille Reader

Arefeh Abbasi

In this thesis, we conduct a comprehensive investigation into structural instabilities of both elastic and magneto-elastic beams and shells, resulting in a creative proposal to design a programmable braille reader. Methodologically, we combine numerical si ...
EPFL2024

Learning Robust and Adaptive Representations: from Interactions, for Interactions

Yuejiang Liu

Interactions are ubiquitous in our world, spanning from social interactions between human individuals to physical interactions between robots and objects to mechanistic interactions among different components of an intelligent system. Despite their prevale ...
EPFL2023

The probability of intransitivity in dice and close elections

Jan Hazla

We study the phenomenon of intransitivity in models of dice and voting. First, we follow a recent thread of research for n-sided dice with pairwise ordering induced by the probability, relative to 1/2, that a throw from one die is higher than the other. We ...
2020
Show more
Related MOOCs (9)
Advanced statistical physics
We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.
Advanced statistical physics
We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.