Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Volumetric 3D printing is a novel technique that offers promising new perspectives in tissue engineering. In volumetric 3D printing, photosensitive gels or liquids are solidified by projecting light patterns via reverse tomography. Recent results show that this method allows for the rapid fabrication of cell-laden tissues. However, these materials exhibit strong light scattering, downgrading the fidelity of the light patterns as they penetrate. This compromises resolution and maximal print size. In this thesis we will explore strategies to estimate and compensate light scattering in printable materials to increase resolution, with special attention for bioprinting. Preliminary results show that it is possible to reduce scattering in cell suspensions. Additionally, we propose a method to estimate the refractive index of samples by means of denoised multi-wavelength phase unwrapping. Numerical simulations point towards the possibility of using this technique in thick samples.
Christophe Moser, Jorge Andres Madrid Wolff, Yi Yang, Riccardo Rizzo
Josephine Anna Eleanor Hughes, Kai Christian Junge, Antonia Georgopoulou Papadonikolaki