Pointwise convergenceIn mathematics, pointwise convergence is one of various senses in which a sequence of functions can converge to a particular function. It is weaker than uniform convergence, to which it is often compared. Suppose that is a set and is a topological space, such as the real or complex numbers or a metric space, for example. A net or sequence of functions all having the same domain and codomain is said to converge pointwise to a given function often written as if (and only if) The function is said to be the pointwise limit function of the Sometimes, authors use the term bounded pointwise convergence when there is a constant such that .
Radio propagationRadio propagation is the behavior of radio waves as they travel, or are propagated, from one point to another in vacuum, or into various parts of the atmosphere. As a form of electromagnetic radiation, like light waves, radio waves are affected by the phenomena of reflection, refraction, diffraction, absorption, polarization, and scattering. Understanding the effects of varying conditions on radio propagation has many practical applications, from choosing frequencies for amateur radio communications, international shortwave broadcasters, to designing reliable mobile telephone systems, to radio navigation, to operation of radar systems.
Net (mathematics)In mathematics, more specifically in general topology and related branches, a net or Moore–Smith sequence is a generalization of the notion of a sequence. In essence, a sequence is a function whose domain is the natural numbers. The codomain of this function is usually some topological space. The motivation for generalizing the notion of a sequence is that, in the context of topology, sequences do not fully encode all information about functions between topological spaces.
Astronomical radio sourceAn astronomical radio source is an object in outer space that emits strong radio waves. Radio emission comes from a wide variety of sources. Such objects are among the most extreme and energetic physical processes in the universe. In 1932, American physicist and radio engineer Karl Jansky detected radio waves coming from an unknown source in the center of the Milky Way galaxy. Jansky was studying the origins of radio frequency interference for Bell Laboratories. He found "...
Kerr metricThe Kerr metric or Kerr geometry describes the geometry of empty spacetime around a rotating uncharged axially symmetric black hole with a quasispherical event horizon. The Kerr metric is an exact solution of the Einstein field equations of general relativity; these equations are highly non-linear, which makes exact solutions very difficult to find. The Kerr metric is a generalization to a rotating body of the Schwarzschild metric, discovered by Karl Schwarzschild in 1915, which described the geometry of spacetime around an uncharged, spherically symmetric, and non-rotating body.
Cauchy sequenceIn mathematics, a Cauchy sequence, named after Augustin-Louis Cauchy, is a sequence whose elements become arbitrarily close to each other as the sequence progresses. More precisely, given any small positive distance, all but a finite number of elements of the sequence are less than that given distance from each other. It is not sufficient for each term to become arbitrarily close to the term. For instance, in the sequence of square roots of natural numbers: the consecutive terms become arbitrarily close to each other – their differences tend to zero as the index n grows.
Geometric distributionIn probability theory and statistics, the geometric distribution is either one of two discrete probability distributions: The probability distribution of the number X of Bernoulli trials needed to get one success, supported on the set ; The probability distribution of the number Y = X − 1 of failures before the first success, supported on the set . Which of these is called the geometric distribution is a matter of convention and convenience. These two different geometric distributions should not be confused with each other.
Power densityPower density is the amount of power (time rate of energy transfer) per unit volume. In energy transformers including batteries, fuel cells, motors, power supply units etc., power density refers to a volume, where it is often called volume power density, expressed as W/m3. In reciprocating internal combustion engines, power density (power per swept volume or brake horsepower per cubic centimeter) is an important metric, based on the internal capacity of the engine, not its external size.
Apple Lossless Audio CodecThe Apple Lossless Audio Codec (ALAC), also known as Apple Lossless, or Apple Lossless Encoder (ALE), is an audio coding format, and its reference audio codec implementation, developed by Apple Inc. for lossless data compression of digital music. After initially keeping it proprietary from its inception in 2004, in late 2011 Apple made the codec available open source and royalty-free. Traditionally, Apple has referred to the codec as Apple Lossless, though more recently it has begun to use the abbreviated term ALAC when referring to the codec.
Convergence of random variablesIn probability theory, there exist several different notions of convergence of random variables. The convergence of sequences of random variables to some limit random variable is an important concept in probability theory, and its applications to statistics and stochastic processes. The same concepts are known in more general mathematics as stochastic convergence and they formalize the idea that a sequence of essentially random or unpredictable events can sometimes be expected to settle down into a behavior that is essentially unchanging when items far enough into the sequence are studied.