In mathematics, more specifically in general topology and related branches, a net or Moore–Smith sequence is a generalization of the notion of a sequence. In essence, a sequence is a function whose domain is the natural numbers. The codomain of this function is usually some topological space.
The motivation for generalizing the notion of a sequence is that, in the context of topology, sequences do not fully encode all information about functions between topological spaces. In particular, the following two conditions are, in general, not equivalent for a map between topological spaces and :
The map is continuous in the topological sense;
Given any point in and any sequence in converging to the composition of with this sequence converges to (continuous in the sequential sense).
While condition 1 always guarantees condition 2, the converse is not necessarily true if the topological spaces are not both first-countable. In particular, the two conditions are equivalent for metric spaces. The spaces for which the converse holds are the sequential spaces.
The concept of a net, first introduced by E. H. Moore and Herman L. Smith in 1922, is to generalize the notion of a sequence so that the above conditions (with "sequence" being replaced by "net" in condition 2) are in fact equivalent for all maps of topological spaces. In particular, rather than being defined on a countable linearly ordered set, a net is defined on an arbitrary directed set. This allows for theorems similar to the assertion that the conditions 1 and 2 above are equivalent to hold in the context of topological spaces that do not necessarily have a countable or linearly ordered neighbourhood basis around a point. Therefore, while sequences do not encode sufficient information about functions between topological spaces, nets do, because collections of open sets in topological spaces are much like directed sets in behavior. The term "net" was coined by John L. Kelley.
Nets are one of the many tools used in topology to generalize certain concepts that may not be general enough in the context of metric spaces.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, a topological vector space (also called a linear topological space and commonly abbreviated TVS or t.v.s.) is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is also a topological space with the property that the vector space operations (vector addition and scalar multiplication) are also continuous functions. Such a topology is called a and every topological vector space has a uniform topological structure, allowing a notion of uniform convergence and completeness.
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms formalizing the concept of closeness.
In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called elements, or terms). The number of elements (possibly infinite) is called the length of the sequence. Unlike a set, the same elements can appear multiple times at different positions in a sequence, and unlike a set, the order does matter. Formally, a sequence can be defined as a function from natural numbers (the positions of elements in the sequence) to the elements at each position.
This course introduces students to continuous, nonlinear optimization. We study the theory of optimization with continuous variables (with full proofs), and we analyze and implement important algorith
Modern optimization is tasked with handling applications of increasingly large scale, chiefly due to the massive amounts of widely available data and the ever-growing reach of Machine Learning. Consequently, this area of research is under steady pressure t ...
Explores dominant balance analysis in solving the quintic polynomial, revealing insights into root behavior and the importance of symbolic expressions.
Covers the quadratic penalty method and augmented Lagrangian, including the setup and convergence of sequences.
, ,
Background and hypothesis: Redox dysregulation has been proposed as a convergent point of childhood trauma and the emergence of psychiatric disorders, such as schizophrenia (SCZ). A critical region particularly vulnerable to environmental insults during ad ...
2024
, , , ,
Time reversal exploits the invariance of electromagnetic wave propagation in reciprocal and lossless media to localize radiating sources. Time-reversed measurements are back-propagated in a simulated domain and converge to the unknown source location. The ...