Achieving high hybridization density at DNA biosensor surfaces using branched spacer and click chemistry
Related publications (32)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Natural competence for transformation is an important driver of horizontal DNA exchange between different organisms. This can result in accumulation of dangerous genetic features, such as antibiotic resistance genes, in a single organism. One example of an ...
There are 377 Krüppel-associated box (KRAB) domain-containing zinc finger proteins (KZFPs) in the human genome, making them the largest family of transcription factors. KZFPs are defined by a N-terminal KRAB domain and several zinc-finger domains arranged ...
DNA fragmentation is an essential process in developing genetic sequencing strategies, genetic research, as well as for the diagnosis of diseases with a genetic signature like cancer. Efficient on-chip DNA fragmentation protocols would be beneficial to pro ...
Recognition of pathogen-derived molecules through germline-encoded receptors is a fundamental principle of innate immunity. Pattern recognition receptors detect specific intracellular danger signals to trigger potent immune responses. The DNA sensor cyclic ...
Difficulties to replicate telomeres - the ends of our chromosomes - can cause telomere shortening andgenome instability. These difficulties are due to the repetitive DNA sequence and distinct structures at telomeresthat challenge the semi-conservative DNA ...
Next-generation sequencing (NGS) is an essential technology for DNA identification in genomic research. DNA fragmentation is a critical step for NGS and doing this on-chip is of great interest for future integrated genomic solutions. Here we demonstrate fa ...
Biologically inspired solid-state nanopores are artificial openings or apertures in thin membranes similar to natural protein ion channels in a lipid bilayer of cell membranes. In solid-state nanopores, a thin insulating membrane with single or multiple po ...
Cancer is the second leading cause of death worldwide. Cancer develops through multiple hallmark functions including apoptosis evasion, unlimited replicative potential, metastasis, and immune avoidance. Over the past few decades, researchers have reported ...
RNA-binding proteins are instrumental for post-transcriptional gene regulation, controlling all aspects throughout the lifecycle of RNA molecules. However, transcriptome-wide methods to profile RNA-protein interactions in vivo remain technically challengin ...
Type I CRISPR-Cas systems typically rely on a two-step process to degrade DNA. First, an RNA-guided complex named Cascade identifies the complementary DNA target. The helicase-nuclease fusion enzyme Cas3 is then recruited in trans for processive DNA degrad ...